人才详细信息

姓名:曹斌
性别:
学历:博士
专家类别:副研究员/优青
电话:
传真:
电子邮箱:bin.cao@itpcas.ac.cn
职称:副研究员
通讯地址:北京市朝阳区林萃路16号院3号楼

简介

教育经历
2012/06–2018/06, 兰州大学自然地理学, 硕士/博士
2015/09–2017/01, 加拿大卡尔顿大学自然地理学, 公派联培
2008/09–2012/06, 兰州大学地理科学, 学士
工作经历
2021/11–至今, 中国科学院青藏高原研究所, 副研究员
2019/07–2021/11, 中国科学院青藏高原研究所, 特别研究助理
2018/10–2019/05, 加拿大卡尔顿大学地理与环境学院, 博士后

研究方向

冻土与气候变化、积雪模拟、再分析资料与降尺度处理

职务

社会任职

2024–至今:《冰川冻土》, 青年编委

2023–至今:中国冰冻圈科学学会青年工作委员会,委员

2018–2019:联合国政府间气候变化专门委员会“气候变化中的海洋和冰冻圈特别报告” (Contributing Author for the IPCC Special Report on the Ocean and Cryosphere in a Changing Climate),山地多年冻土供稿作者

承担项目

主持项目
国家自然科学基金委优秀青年科学基金项目(2025–2027)
中国科学院青年创新促进会项目(2023–2026)
新疆干旱区水循环与水利用重点实验室开放基金项目(2023–2026)
大地测量与地球动力学国家重点实验室开放基金项目(2023–2024)
国家自然科学基金委青年基金:多年冻土过剩冰融化及其影响模拟研究(2022–2024)
中国科学院特别研究助理资助项目:青藏高原多年冻土地下冰损失及其水文效应(2020–2021)
博士后科学基金面上资助(一等):基于高分辨率模拟的黑河上游活动层厚度时空变化特征(2020–2021)

参与项目
加拿大自然科学基金项目:Prediction of permafrost change in Permafrost Partnership Network for Canada (PermafrostNet)(2019–2024)
SOSCIP, IBM, OCE, CUIDS, NTGS和ENR:Simulating climate change impacts on permafrost systems(2017–2019)
国家自然科学基金重点项目:黑河上游多年冻土区地表水、地下水过程及其效应研究(2014–2017)
国家自然科学基金面上项目:黑河流域冻土特征及其对生态–水文过程的响应(2011–2013)
中国科学院,先导专项子课题, 基于钻孔温度恢复高原中部古气候(2013–2017)

获奖及荣誉

中国科学院青年创新促进会(2023),中国科学院
西部环境奖--研究生创新奖(2020),西部环境教育部重点实验
兰州大学" 求真" 奖学金(2018),兰州大学

代表论著

代表论著
第一作者及通讯作者:

[1] Wang, S., Cao, B.*, Hao, J.*, Sun, W., Zhang, K.: Consistent ground surface temperature climatology over China: 1956-2022. Journal of Geophysical Research: Atmospheres, 129, e2024JD040916. doi.org/10.1029/2024JD040916, 2024.
[2] Lan, S., Cao, B.*, Hu, Y., Sun, Z., Ma, R., Li, X.: Talus and its cooling effects on the thermal regime of permafrost: A review. Permafrost and Periglacial Processes, 35(1), 60-75. doi.org/10.1002/ppp.2213, 2024.
[3] Cao, B., Wang, S.*, Hao, J.*, Sun, W., Zhang, K.: Inconsistency and correction of manually observed ground surface temperatures over snow-covered regions. Agricultural and Forest Meteorology, 338, 109518. doi.org/10.1016/j.agrformet.2023.109518, 2023.
[4] Sun, W., Cao, B.*, Hao, J., Wang, S., Clow, D., Fan, C., Wang, S., Liang, B., Sun, Y., Zhao, Y., Peng, X., Yao, Y., Zhang, T.: Two-dimensional simulation of island permafrost degradation in Northwestern Tibetan Plateau. Geoderma, 430, 116330, doi.org/10.1016/j.geoderma.2023.116330, 2023.
[5] Sun, W., Zhang, T.*, Clow, D., Sun, Y., Zhao, W., Liang, B., Fan, C, Peng, X., Cao, B.*: Observed permafrost thawing and disappearance near the altitudinal limit of permafrost in the Qilian Mountains. Advances in Climate Change Research, 13(5), 642-650, doi.org/10.1016/j.accre.2022.08.004, 2022.
[6] Cao, B.*, Arduini, G., and Zsoter, E.: Brief communication: Improving ERA5-Land soil temperature in permafrost regions using an optimized multi-layer snow scheme. The Cryosphere, 16, 2701-2078, doi.org/10.5194/tc-16-2701-2022, 2022.
[7] Cao, B., Li, X.*, Feng, M., Zheng, D.: Quantifying overestimated permafrost extent driven by rock glacier inventory. Geophysical Research Letters, 48, e2021GL092476, doi.org/10.1029/2021GL092476, 2021.
[8] Cao, B., Gruber, S., Zheng, D.*, and Li, X.*: The ERA5-Land soil temperature bias in permafrost regions, The Cryosphere, 14, 2581-2595. doi.org/10.5194/tc-14-2581-2020, 2020.
[9] Cao, B., Quan, X., Brown, N., Stewart-Jones, N., Gruber, S.*: GlobSim (v1.0): Deriving point time-series from multiple atmospheric reanalyses. Geoscientific Model Development, 12, 4661-4679, doi.org/10.5194/gmd-12-4661-2019, 2019.
[10] Cao, B., Zhang, T.*, Wu, Q., Sheng, Y., Zhao, L., Zou, D.: Permafrost zonation index map and statistics over the Qinghai-Tibet Plateau based on in-situ evidence. Permafrost and Periglacial Processes, 30(3): 178-194, doi.org/10.1002/ppp.2006, 2019.
[11] Cao, B., Zhang, T.*, Wu, Q., Sheng, Y., Zhao, L., Zou, D.: Brief Communication: Evaluation and inter-comparisons of Qinghai-Tibet Plateau permafrost maps based on a new inventory of field evidence. The Cryosphere, 13(2): 511-519, doi.org/10.5194/tc- 13-511-2019, 2019.
[12] Cao, B., Zhang, T.*, Peng, X., Mu, C., Wang, Q., Zheng, L., Wang, K., Zhong, X.: Thermal Characteristics and Recent Changes of Permafrost in the Upper Reaches of Heihe River Basin. Journal of Geophysical Research: Atmospheres, 123(15): 7935-7949, doi.org/10.1029/2018JD028442, 2018.
[13] Cao, B.*, Gruber, S., and Zhang, T.: REDCAPP (v1.0): parameterizing valley inversions in air temperature data downscaled from reanalyses. Geoscientific Model Development, 10(8): 2905-2923, 10.5194/gmd-10-2905-2017, 2017.
[14] Cao, B., Gruber, S., Zhang, T.*, Li, L., Peng, X., Wang, K., Zheng, L., Shao, W., Guo, H.: Spatial variability of active layer thickness detected by ground-penetrating radar in the Qilian Mountains, western China. Journal of Geophysical Research: Earth Surface, 122(3): 574-591, doi:10.1002/2016JF004018, 2017.
[15] 王升第,曹斌*, 郝建盛*, 孙文, 周志伟. 新疆季节性积雪对地表温度的影响, 冰川冻土, 45(2): 1-11, doi:0.7522/jissn.1000-0240.2023.0033, 2023.
[16] 曹斌, 张廷军*, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析, 地球科学进展,30(3): 357-366, doi:10.11867/j.issn.1001-8166.2015.03.0357, 2015.
其他合著论文:
[17] 王康*, 牟翠翠, 刘佳, 彭小清,曹斌,郑雷. 理解寒区气候变化及陆气交互作用:简述张廷军教授的学术贡献. 气候变化研究进展, 2024, 20 (4). DOI: 10.12006/j.issn.1673-1719.2021.081
[18] 王康, 牟翠翠, 彭小清, 郑雷, 曹斌, 贾朗, 何海龙, 朱杨, 王明珠, 许金龙. 寒区在变热:暨述张廷军教授四十余载学术之路及贡献. 冰川冻土, 45(2): 291-305 (CSCD), 2023.
[19] Deng, Y. et al. ‘Impact of climate change on the long-term water balance in the Yarlung Zangbo basin’, Frontiers in Earth Science. 2023
[20] Zhao, Y., Yao, Y., Jin, H., Cao, B., Hu, Y., Ran, Y., & Zhang, Y.: Characterizing the Changes in Permafrost Thickness across Tibetan Plateau. Remote Sensing, 15(1), 206. doi.org/10.3390/rs15010206, 2022.
[21] Ji, F., Fan, L., Kuang, X., Li, X., Cao, B., Cheng, G., and Yao, Y., Zheng, C.: How does soil water content influence permafrost evolution on the Qinghai-Tibet plateau under climate warming? Environmental Research Letters, 17(6): 064012, doi.org/10.1088/1748- 9326/ac6c9a, 2022.
[22] Zhou, Y., Li, X., Zheng, X, Li, Z., An, B., Wang, Y., Jiang, D., Su, J., Cao, B.: The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya. Science China Earth Sciences, 64, 1909–1921, doi.org/10.1007/s11430-021-9844-0, 2021.
[23] 周玉杉, 李新, 郑东海, 李志伟, 安宝晟, 汪赢政, 姜德才, 苏建宾, 曹斌.  气候变化和异常天气共同导致印度杰莫利冰-岩崩塌, 中国科学:  地球科学, 51(12):  2112-2125, doi.org/10.1360/N072021-0169, 2021.
[24] 王康, 张廷军, 牟翠翠, 钟歆玥, 彭小清, 曹斌, 鲁蕾, 郑雷, 吴小丹, 刘佳. 从第三极到北极: 气候与冰冻圈变化及其影响, 冰川冻土,42(1): 104–123, DOI:10.7522/j.issn.1000-0240.2020.0004, 2020.
[25] Chen, J., Liu L., Zhang, T., Cao, B., Lin, H.: Using Persistent Scatterer Interferometry to map and quantify permafrost thaw subsidence: a case study of Eboling Mountain on the Qinghai-Tibet Plateaus. Journal of Geophysical Research: Earth Surface, 123(10): 2663-2676, doi.org/10.1029/2018JF004618, 2018.
[26] Peng, X., Zhang, T., Frauenfeld, O., Wang, K., Luo, D., Cao, B., Su, H., Jin, H., and Wu, Q. (2018): Spatiotemporal changes in active layer thickness under contemporary and projected climate in the Northern Hemisphere. Journal of Climate, 31(1): 251-266, doi.org/10.1175/JCLI-D-16-0721.1, 2018.
[27] Wang, K., Zhang, T., Zhang, X., Clow, G., Jafarov, E., Overeem, I., Romanovsky, V., Peng, X., Cao, B.: Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus. Geophysical Research Letters, 44(17): 9029-9038, doi:10.1002/2017GL074232, 2017.
[28] Mu, C., Zhang, T., Zhao, Q, Su, H., Wang, S., Cao, B., Peng, X., Wu, Q. and Wu, X.: Permafrost affects carbon exchange and its response to experimental warming on the northern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 247: 252-259, doi.org/10.1016/j.agrformet.2017.08.009, 2017.
[29] Wang Q., Jin, H. Zhang, T. Cao, B., Peng X., Wang K., Xiao X., Guo, H. Mu, C. Li, L.: Hydro-thermal processes and thermal offsets of peat soils in the active layer in an alpine permafrost region, NE Qinghai-Tibet plateau. Global and Planetary Change, 156: 1-12, 10.1016/j.gloplacha.2017.07.011, 2017.
[30] Peng, X., Zhang, T. and Frauenfeld, O. W., Wang, K., Cao, B., Zhong, X., Su, H., and Mu, C.: Response of seasonal soil freeze depth to climate change across China, The Cryosphere, 11(3): 1059-1073, doi:10.5194/tc-11-1059-2017, 2017.
[31] Peng, X., Frauenfeld, O., Cao, B., Wang, K., Wang, H., Su, H., Huang, Z., Yue, D., and Zhang, T.: Response of Changes in Seasonal Soil Freeze/Thaw State to Climate Change from 1950 to 2010 across China. Journal of Geophysical Research: Earth Surface, 121(11): 1984-2000, doi:0.1002/2016JF003876, 2016.
[32] Mu, C, Zhang, T, Zhang, X, Cao, B, Peng, X.: Sensitivity of soil organic matter de- composition to temperature at different depths in permafrost regions on the northern Qinghai-Tibet Plateau. European Journal of Soil Science, 67(6):773-781, doi:10.1111/ejss.12386, 2016.
[33] Mu, C., Zhang, T., Zhang, X., Cao, B., Peng, X., Cao, L., Su, H.: Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau. CATENA, 141: 85-91, doi:10.1016/j.quaint.2016.08.027, 2016.
[34] Wang, Q., Zhang, T., Jin, H., Cao, B., Peng, X., Wang, K., Li, L., Guo, H., Liu, J., and Cao, L.: Observational study on the active layer freeze-thaw cycle in the upper reaches of the Heihe River of the north-eastern Qinghai-Tibet Plateau. Quaternary International, 440: 13-22, doi:10.1016/j.quaint.2016.08.027, 2016.
[35] Peng, X., Zhang, T., Cao, B., Wang, Q., Wang, K., Shao, W., and Guo, H.: Changes in Freezing-Thawing Index and Soil Freeze Depth Over the Heihe River Basin, Western China. Arctic, Antarctic, and Alpine Research, 48(1): 161-176, doi:10.1657/AAAR00C- 13-127, 2016.
[36] Wang, Q., Zhang, T., Peng, X., Cao, B., Wu, Q.: Changes of Soil Thermal Regimes in the Heihe River Basin Over Western China. Arctic, Antarctic, and Alpine Research, 47(2): 231-241, doi:10.1657/AAAR00C-14-012, 2015.
[37] Mu, C., Zhang, T., Wu, Q., Cao, B., Zhang, X., Peng, X., Wan, X., Zheng, L., Wang, Q., Cheng, G.: Carbon and Nitrogen Properties of Permafrost over the Eboling Mountain in the Upper Reach of Heihe River Basin, Northwestern China. Arctic, Antarctic, and Alpine Research, 47(2): 203-211, doi:10.1657/AAAR00C-13-095, 2015.
[38] Mu, C., Zhang, T., Wu, Q., Peng, X., Cao, B., Zhang, X., Cao, B., Cheng, G.: Editorial: Organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau. The Cryosphere, 9(2): 479-486, doi:10.5194/tc-9-479-2015, 2015.
[39] Mu, C., Zhang, T., Wu, Q., Zhang, X., Cao, B., Wang, Q., Peng, X., Cheng, G.: Stable carbon isotopes as indicators for permafrost carbon vulnerability in upper reach of Heihe River basin, northwestern China. Quaternary International, 321: 71-77, doi:10.1016/j.quaint.2013.12.001, 2014.
[40] 牟翠翠, 张廷军, 曹斌, 万旭东, 彭小清, 程国栋: 祁连山区黑河上游俄博岭多年冻土区活动层碳储量研究. 冰川冻土, 35(1): 1-9, doi: 10.7522/j.issn.1000-0240.2013.0001, 2013.
专著及会议论文:
[41] 地球三极:全球变化的前哨, 2021, 北京, 科学出版社. 《第六章:面向极地治理战略的应对与措施建议》, 主要作者.
[42] High Mountain Areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. The Intergovernmental Panel on Climate Change (IPCC), 2019, 供稿作者 (Contributing Author).
[43] Cao, B., Brown, N., Quan, X., Stewart-Jones, E., Gruber, S.: Site-level Permafrost Sim- ulation in Remote Areas Driven by Atmospheric Re-analyses: A Case Study from the Northwest Territories. The 18th International Conference on Cold Regions Engineering and the 8th Canadian Permafrost Conference, doi.org/10.1061/9780784482599.062, 2019.