人才详细信息

姓名:黄文涛
性别:
学历:博士
专家类别:研究员
电话:
传真:010-84097079
电子邮箱:whuang@itpcas.ac.cn
职称:研究员
通讯地址:北京市朝阳区林萃路16号院3号楼

简介

个人简介

黄文涛,1986年生,地质学博士,中国科学院青藏高原研究所研究员,博士生导师,青藏高原地球系统与资源环境重点实验室副主任。2020年入选国家青年人才计划。主要研究专长为青藏高原的构造演化,天然剩磁获取机制与重磁化作用,以及古地磁场的起源与演变。所采用的手段主要包括古地磁学(构造磁学,磁性地层学,古强度学,单矿物古地磁学),岩石磁学,岩相学(扫描电镜),地质年代学,低温热年代学(U-Th/He,40Ar/39Ar,裂变径迹等),以及稳定同位素地球化学。黄文涛博士在研究工作中,从岩石天然剩磁获取机制入手,综合利用多种手段,对古地磁数据及其偏差进行评价与校正,从而对青藏高原各个地块进行了可靠的古地理重建,并对古地磁方法的地质应用提出了全新的见解。采用单矿物古强度方法确定出20.5亿年前和0.59亿年前古地磁场绝对强度,报道了现今已知的最低时间平均地磁场强度值,提出了新元古代大气增氧与埃迪卡拉纪动物辐射新机制。已发表论文36篇(SCI总引用2600余次),在PNAS、NCEE 、EPSL(4篇)、GRL(2篇)、JGR(8篇)等顶级杂志上以第一作者和通讯作者发表论文20篇。另有16篇合作文章在Nature Geoscience、Nature Communications、PNAS、Science Advances、Geology等顶级杂志上发表。。

教育与工作经历

2005.09 - 2009.07 南京大学,地质学学士学位

2009.09 - 2015.07 北京大学,构造地质学博士学位

2015.10 - 2017.09 美国亚利桑那大学,博士后

2017.11 - 2019.10 美国罗切斯特大学,博士后

2019.11 - 2021.06 美国罗切斯特大学,Research Associate

2021.08 - 今 中国科学院青藏高原研究所,研究员


研究方向

古地磁学、低温热年代学、青藏高原构造演化、地球与月球磁场演化

职务

研究员

社会任职

承担项目

1.荷兰科学研究组织(NWORubicon基金项目(2015 - 2017),主持

2.美国明尼苏达大学岩石磁学研究所访问学者基金项目(2016201720192023),主持

3.国家青年人才项目(2021 - 今),主持

4.中国科学院青年人才项目(2021 - 今),主持

5.国家自然科学基金委面上项目(2023 - 今),主持

6.青藏高原地球系统与资源环境重点实验室青年重大创新项目(2023 - 今),主持

获奖及荣誉

2015年北京大学优秀博士论文

2015年李四光优秀博士生奖

代表论著

论文发表(*通讯作者)

 36. Zhou, T., Ibañez-Mejia, M., Bono, R. K., Cottrell, R. D., Bleeker, W., Kodama, K.P., Huang, W., Blackman E.G., Nimmo, F., Smirnov, A.V., Tarduno, J, A.*, 2024, Magnetization and age of ca. 544 Ma syenite, eastern Canada: Evidence for renewal of the geodynamo, Earth and Planetary Science Letters, 639, 118758.

 35. Huang, W., Garzanti, E., Moore, T.C., Kapp, P., DeCelles, P.G., and Niu S.*, Continuity of the Sangdanlin Paleocene section and rejection of a large Greater India in the Early Cretaceous, 2024, Proceedings of the National Academy of Sciences, 19, e2402456121.

 34. Huang, W., Tarduno, J.A.*, Zhou, T., Ibañez-Mejia, M., Dal Olmo-Barbosa, L., Koester, E., BlackmanE.G.Smirnov, A.V., AhrendtG., CottrellR.D., Kodama, K.P., Bono, R.K., Sibeck, D.G., Li, Y., Nimmo, F., Xiao, S., Watkeys, M.W., 2024, Near-collapse of the geomagnetic field may have contributed to atmospheric oxygenation and animal radiation in the Ediacaran Period, Nature Communications Earth & Environment, 5:207.

 Featured article in Nature Communications Earth & Environment

 In the news ­­­­–

 EurekAlert!: Evolution: Weak magnetic field may have supported diversification of life on Earth (https://www.eurekalert.org/news-releases/1042908)

 CNN: Over 500 million years ago, weird complex creatures emerged on Earth. Scientists now think they know why (https://edition.cnn.com/2024/05/07/world/earth-magnetic-field-near-collapse-ediacaran-scn/index.html)

  EOS: A Magnetic Low May Have Paved the Way for Complex Life (https://eos.org/articles/a-magnetic-low-may-have-paved-the-way-for-complex-life)

 33. Yao, Y., Huang, W.*, Qin, H., Bian, W., Jia Z., and Deng C.*, 2024, Remagnetization of Upper Triassic limestone from the central Lhasa terrane (Tibet): Identification, mechanisms, and implications for diagnosing secondary remanent magnetization in carbonate rocks, Journal of Geophysical Research: Solid Earth, 129, e2024JB029316.

 32. Huang, W.*, Lippert, P.C., Reiners, P.W., Quade, J., Kapp, P., Ganerød, M., Guo, Z., & van Hinsbergen D.J.J, 2023, Reply to comment by Zhao et al. on “Hydrothermal events in the Linzizong sequence: implications for Paleogene exhumation and paleoaltimetry of the southern Tibetan Plateau”, Earth and Planetary Science Letters, 603, 117973.

 31. Huang, W.*, Niu, S., Dekkers, M., Lippert, P. C., Bilardello, D., Solheid, P., Zhang, B., Dupont-Nivet, G., van Hinsbergen, D.J.J., & Ding, L., 2023, Remagnetization under hydrothermal alteration of Paleocene south Tibetan lavas: maghematization, hematization, and grain size reduction of (titano)magnetite, Journal of Geophysical Research: Solid Earth. e2023JB026418, doi: 10.1029/2023JB026418.

 30. Huang, W.*, Niu, S., Dekkers, M., Lippert, P. C., Bilardello, D., Solheid, P., Zhang, B., Dupont-Nivet, G., van Hinsbergen, D.J.J., & Ding, L., 2023, Remagnetization under hydrothermal alteration of Paleocene south Tibetan lavas: maghematization, hematization, and grain size reduction of (titano)magnetite, Journal of Geophysical Research: Solid Earth. e2023JB026418, doi: 10.1029/2023JB026418.

 29. Zhou T., Tarduno, J.A.*, Nimmo, F., Cottrell R.D., Bono, R.K., Ibañez-Meija, M., Huang, W., Hamilton M., Kodama, K., Smirnov, A.V., Crummins, B., Padgett, F., 2022. Early Cambrian renewal of the geodynamo and the origin of inner core structure. Nature Communications, 13(1), 1-7.

 28. Huang, W.*, Lippert, P.C., Reiners, P.W., Quade, J., Kapp, P., Ganerød, M., Guo, Z., & van Hinsbergen D.J.J, 2022, Hydrothermal events in the Linzizong sequence: implications for Paleogene exhumation and paleoaltimetry of the southern Tibetan Plateau, Earth and Planetary Science Letters, 583, 117390.

 27. Tarduno, J.A.*, Cottrell, R.D., Lawrence, K., Bono, R.K., Huang, W., Johnson, C.L., Blackman, E.G., Smirnov, A.V., Nakajima, M., Neal, C.R. and Zhou, T., 2021. Absence of a long-lived lunar paleomagnetosphere. Science Advances, 7, eabi7647.

 26.  Huang, W.*, Jackson, M., Dekkers, M.J., Solheid, P., Li, S., Zhang, Y., Guo, Z., & Ding, L., 2020, Remagnetization of red beds on the Tibetan Plateau: mechanisms and diagnosis, Journal of Geophysical Research: Solid Earth, 125, e2020JB020068, doi: 10.1029/2020JB020068.

 25. Quade, J.*, Leary, R., Dettinger, M., Orme, D., Krupa, A., DeCelles, P.G., Kano, A., Kato, H., Waldrip, R., Huang, W., and Kapp, P., 2020, Resetting Tibet: The serious challenge of obtaining primary records of paleoaltimetry, Global and Planetary Change, 191, 103194.

 24.  Tarduno, J.A.*, Cottrell, R.D., Bono, R.K., Oda, H., Davis, W.J., Fayek., M., van 't Erve, O., Nimmo., F., Huang, W., Thern, E., Fearn, S., Mitra, G., Smirnov, A., Blackman, E., 2020, Paleomagnetism indicates that primary magnetite in zircon records a strong Hadean geodynamo, Proceedings of the National Academy of Sciences, 117(5): 2309-2318.

 23.  Huang, W.*, Jackson, M.J., Dekkers, M.J., Solheid, P., Zhang, B., Guo, Z., & Ding, L., 2019, Nanogoethite as a potential indicator of remagnetization in red beds, Geophysical Research Letters, 46, doi: 10.1029/2019GL084715.

 22  Zhang, Y., Huang, W., Zhang, Y., Poujol, M., Guillot, S., Roperch, P., Dupont-Nivet, G., & Guo, Z.*, 2019, Provenance comparison between the Paleocene-Eocene Nangqian-Xialaxiu and Gongjue basins: new insight for Cenozoic paleogeographic evolution of the eastern Tibetan Plateau, Palaeogeography, Palaeoclimatology, Palaeoecology, 533, 109241.

 21.  Huang, W.*, Jackson, M.J., Dekkers, M.J., Zhang, Y., Zhang, B., Guo, Z. & Dupont-Nivet, G., 2019, Challenges in isolating primary remanent magnetization from Tethyan carbonate rocks on the Tibetan Plateau: insight from remagnetized Upper Triassic limestones in the eastern Qiangtang terrane, Earth and Planetary Science Letters, 523, 115695.

 20.  Chen, S.*, Guo, Z., Huang, W., 2019, Traces of Archean Subduction in the Tarim Craton, Northwest China: Evidence from the Tuoge Complex and Implications for Basement Formation. The Journal of Geology 127, 323-341.

 19.  van Hinsbergen, D.J.J.*, Lippert, P.C., Li, S., Huang, W., Advokaat, E.L. & Spakman W., 2019, Reconstructing Greater India: paleogeographic, kinematic, and geodynamic perspectivesTectonophysics, 760, 69-94.

 18.  Zhang, Y., Huang, W.*, Huang, B., van Hinsbergen, D.J.J., Dupont-Nivet, G., & Guo, Z.*, 2018, 5343 Ma deformation of the Eastern Tibet revealed by three stages of tectonic rotation in the Gongjue basin, Journal of Geophysical Research: Solid Earth, 123, 3320-3338, doi: 10.1002/2018JB015443.

 17.  van Hinsbergen, D.J.J. *, Lippert, P. C., Huang, W., 2017. Unfeasible subduction?, Nature Geoscience, 10, 878-880.

 16.  Huang, W.*, Lippert, P. C., Jackson, M., Dekkers, M.J., Zhang, Y., Li, J., Hu, X., Guo, Z., Kapp, P. & van Hinsbergen, D.J.J., 2017c. Reply to comment by Yi et al. on “Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: implications for reconstructing the lower plate in the India-Asia collision”, Journal of Geophysical Research: Solid Earth, 122, 4859-4863, doi: 10.1002/2017JB014447.

 15.  Huang, W.*, Lippert, P.C., Zhang, Y., Jackson, M., Dekkers, M.J., Li J., Hu, X., Zhang, B., Guo, Z. & van Hinsbergen, D.J.J., 2017b. Remagnetization of carbonate rocks in southern Tibet: perspective from rock magnetic and petrographic investigations, Journal of Geophysical Research: Solid Earth, 122, 2434–2456, doi: 10.1002/2017JB013987

 In the news ­­­­- EOS Research Spotlight

 Diagnosing cryptic remagnetization in sedimentary rocks (https://eos.org/research-spotlights/diagnosing-cryptic-remagnetization-in-sedimentary-rocks)

 14.  Huang, W.*, Lippert, P. C., Jackson, M., Dekkers, M.J., Zhang, Y., Li, J., Hu, X., Guo, Z., Kapp, P. & van Hinsbergen, D.J.J., 2017a. Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: implications for reconstructing the lower plate in the India-Asia collision, Journal of Geophysical Research: Solid Earth, 122, 808-825, doi: 10.1002/2016JB013662.

 13.  Hu, X.*, Garzanti, E., Wang, J., Huang, W., An, W. & Webb A., 2016. The timing of India-Asia collision onset – facts, theories and controversies. Earth-Science Reviews, 160: 264-299.

 12.  Huang, W.*, van Hinsbergen, D.J.J., Lippert, P.C., Guo, Z. & Dupont-Nivet, G., 2015. Paleomagnetic tests of tectonic reconstructions of the India-Asia collision zone, Geophysical Research Letters, 42, 2642-2649, doi: 10.1002/2015GL063749.

 11.  Maffione, M.*, van Hinsbergen, D.J.J., Koornneef, L., Guilmette, C., Hodges, K., Bornman, N., Huang, W., Ding, L. & Kapp, P., 2015. Forearc hyperextension dismembered the South Tibetan ophiolites, Geology, 43(6), 475-478, doi:10.1130/G36472.36471.

 10.  Huang, W.*, Dupont-Nivet, G., Lippert, P.C., van Hinsbergen, D.J.J., Dekkers, M.J., Guo, Z., Waldrip, R., Ganerød, M., Li, X. & Kapp, P., 2015. What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou Basin, Tibet), Tectonics, 34, 594-622, doi: 10.1002/2014TC003787.

 9.  Huang, W.*, van Hinsbergen, D.J.J., Maffione, M., Orme, D.A., Dupont-Nivet, G., Guilmette, C., Ding, L., Guo, Z. & Kapp, P., 2015. Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc: evidence from paleomagnetism, sediment provenance, and stratigraphy, Earth and Planetary Science Letters, 415, 142-153.

 8.  Huang, W.*, van Hinsbergen, D.J.J, Dekkers, M.J., Garzanti, E., Dupont-Nivet, G., Lippert, P.C., Li, X., Maffione, M., Langereis, C.G., Hu, X., Guo, Z. & Kapp, P., 2015. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks, Geochemistry, Geophysics, Geosystems, 16, 77-100, doi: 10.1002/2014GC005624.

 7.  Huang, W.*, Dupont-Nivet, G., Lippert, P.C., van Hinsbergen, D.J.J., Dekkers, M.J., Guo, Z., Waldrip, R., Li, X., Zhang, X., Liu, D. & Kapp, P., 2015. Can a primary remanence be retrieved from partially remagnetized Eocence volcanic rocks in the Nanmulin Basin (Southern Tibet) to date the India-Asia collision?, Journal of Geophysical Research: Solid Earth, 120, 42-66, doi: 10.1002/2014JB011599.

 6. Bosboom, R.*, Dupont-Nivet, G., Grothe, A., Brinkhuis, H., Vila, G., Mandic, O., Stoica, M. Kouwenhoven, T., Huang, W., Yang, W. & Guo, Z., 2014. Timing, cause and impact of the Late Eocene stepwise sea retreat from the Tarim Basin (west China), Palaeogeography, Palaeoclimatology, Palaeoecology, 403, 101-118.

 5. Bosboom, R. *, Dupont-Nivet, G., Huang, W., Yang, W. & Guo, Z., 2014. Oligocene clockwise rotations along the eastern Pamir: tectonic and paleogeographic implications, Tectonics, 33, 53-66, doi: 10.1002/2013TC003388.

 4.  Bosboom, R.*, Dupont-Nivet, G., Grothe, A., Brinkhuis, H., Villa, G., Mandic, O., Stoica, M., Huang, W., Yang, W., Guo, Z. & Krijgsman, W., 2013. Linking Tarim Basin sea retreat (west China) and Asian aridification in the Late Eocene, Basin Research, 26, 621-640.

 3.  Huang, W. *, Dupont-Nivet, G., Lippert, P.C., Van Hinsbergen, D.J.J. & Hallot, E., 2013. Inclination shallowing in Eocene Linzizong sedimentary rocks from Southern Tibet: correction, possible causes and implications for reconstructing the India-Asia collision, Geophysical Journal International, 194, 1390-1411.

 2.  Zhu, W.*, Zheng, B., Shu, L., Ma, D., Wu, H., Li, Y., Huang, W. & Yu, J., 2011. Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China: Insights from LA-ICP-MS zircon U–Pb ages and geochemical data, Precambrian Research, 185, 215-230.

 1.  黄文涛,于俊杰郑碧海陈欣阳朱文斌* , 2009. 新疆阿克苏前寒武纪蓝片 岩中多硅白云母的研究,矿物学报,29, 338-344