人才详细信息

姓名:高 晶
性别:
学历:博士
专家类别:研究员/优青
电话:010-84097112
传真:
电子邮箱:gaojing@itpcas.ac.cn
职称:研究员
通讯地址:北京市朝阳区林萃路16号院3号楼

简介

中国科学院青藏高原研究所,研究员

青藏高原环境变化与地表过程研究中心,主任

青藏高原地球系统与资源环境重点实验室,副主任


教育经历(从大学本科开始,按时间倒排序)

2005/09-2010/07,中国科学院青藏高原研究所,博士

2001/09-2005/09,兰州大学,资源环境学院地理系,理学学士 


工作经历(按时间倒排序)

2019/01-至今,   中国科学院青藏高原研究所,青藏高原环境变化与地表过程重点实验室,研究员 

2012/07-2019/01,中国科学院青藏高原研究所,青藏高原环境变化与地表过程重点实验室,副研究员 

2010/07-2012/06,中国科学院青藏高原研究所,青藏高原环境变化与地表过程重点实验室,助理研究员 

2012/07-2012/10,法国国家科学院Laboratoire des Sciences du Climat et de l’Environnement (LSCE),访问学者 

2009/02-2009/05,法国国家科学院Laboratoire des Sciences du Climat et de l’Environnement (LSCE),访问学者 

研究方向

水体稳定同位素现代过程和冰芯记录  

承担项目

1. 国家自然科学基金优秀青年科学基金项目,青藏高原水体稳定同位素与水汽传输,2020/1-2022/12、主持。

2. 科技部,第二次青藏高原综合科学考察研究、2019/01-2023/12、在研、任务二专题8第三负责人。

3. 国家自然科学基金面上项目,青藏高原典型冰川雪-冰沉积后过程对冰芯稳定同位素温度重建影响定量研究、2019/01-2022/12、在研、主持。

4. 中国科学院青年创新促进会优秀会员,2019/01-2021/12、在研、主持。

5. 中国科学院A类战略性先导科技专项-联合攻关项目,气候变化影响下亚洲水塔变化及其影响与绿色发展方案,2018/01-2022/12、在研、参加。

6. 国家自然科学基金面上项目,水汽来源和传输对青藏高原南部现代降水和水汽稳定同位素的影响过程研究、2015/01-2018/12、结题、主持。

7. 中国科学院青年创新促进会,2014/01-2017/12、结题、主持。

8. 国际原子能机构国际合作项目,Stable Isotopes in Precipitation and Paleoclimate Archives in Tropical Areas to Improve Regional Hydrological and Climatic Impact Models、2013/07-2016/07、结题、参加。

9. 中国科学院战略先导性科技专项(B)-15课题,青藏高原多层圈相互作用及其资源环境效应、2012/09-2017/09、结题、子课题负责人。

10. 国家自然科学基金重大项目“第三极地球系统中水体的多相态转换及其影响”、2012/01-2015/12、结题、参加。

11. 国家自然科学基金青年基金项目,青藏高原南部降水稳定同位素的高精度大气环流模型模拟与高分辨率台站观测研究、2012/01-2014/12、结题、主持。

代表论著

发表论著(*表示通讯作者):

  1. Gao, J.*, Yao, T., Masson-Delmotte, V., Steen-Larsen, H., & Wang, W. (2019). Collapsing glaciers threaten Asia’s water supplies. Nature, 565, 19–21.https://doi.org/10.1038/d41586-018-07838-4
  2. Wu, Y., & Gao, J.* (2025). The influence of cloud cover on elevation-dependent warming over the Tibetan Plateau from 1984 to 2022. Atmospheric Research, 323, 108188. https://doi.org/10.1016/j.atmosres.2025.108188
  3. Wu, Y., Gao, J.*, Zhao, A., Niu, X., Liu, Y., Ratnasekera, D., Gamage, T. P., & Samantha, A. H. R. (2025). One-year continuous observations of near-surface atmospheric water vapor stable isotopes at Matara, Sri Lanka, reveal a strong link to moisture sources and convective intensity. Atmospheric Chemistry and Physics, 25(7), 4013–4033. https://doi.org/10.5194/acp-25-4013-2025
  4. Liu, Y., Gao, J.*, & Wang, Y. (2024). Evaluation of atmospheric moisture transport to the Tibetan Plateau from 33 CMIP6 models. npj Climate and Atmospheric Science, 7, 231. https://doi.org/10.1038/s41612-024-00785-0
  5. Shang, B., Gao, J.*, Chen, G., & Wu, Y. (2024). Stable isotopes in atmospheric water vapour: Patterns, mechanisms and perspectives. Science China Earth Sciences, 67, 3789–3813. https://doi.org/10.1007/s11430-023-1410-6
  6. Wu, Y., Gao, J.*, & Zhao, A. (2024). Cloud properties and dynamics over the Tibetan Plateau - A review. Earth-Science Reviews, 248, 104633. https://doi.org/10.1016/j.earscirev.2023.104633
  7. Adhikari, N., Gao, J.*, Zhao, A., Xu, T., Chen, M., Niu, X., & Yao, T. (2024). Spring tropical cyclones modulate near-surface isotopic compositions of atmospheric water vapour in Kathmandu, Nepal. Atmospheric Chemistry and Physics, 24(5), 3279–3296. https://doi.org/10.5194/acp-24-3279-2024
  8. Chen, M., Gao, J.*, Luo, L., Zhao, A., Niu, X., Yu, W., Liu, Y., & Chen, G. (2024). Temporal variations of stable isotopic compositions in atmospheric water vapor on the Southeastern Tibetan Plateau and their controlling factors. Atmospheric Research, 303, 107328. https://doi.org/10.1016/j.atmosres.2024.107328
  9. Adhikari, N., Gao, J.*, Yao, T., Puri, A., Chen, M., & Zhao, A. (2024). The influence of moisture transport processes on the stable isotopic compositions in precipitation on the South slope of the Himalayas. Global and Planetary Change, 104453. https://doi.org/10.1016/j.gloplacha.2024.104453
  10. Chen, G., Li, X.*, Xu, Z., Liu, Y., Zhang, Z., Shao, S., & Gao, J. (2024). PDO influenced interdecadal summer precipitation change over East China in mid-18th century. npj Climate and Atmospheric Science, 7, 114. https://doi.org/10.1038/s41612-024-00657-7
  11. Fan, X., Gao, J.*, Zhao, A., & Gong, P. (2023). Spatial variability of stable isotopes in river water over the Tibetan Plateau. Hydrological Processes, 37(10), e15012.  https://doi.org/10.1002/hyp.15012
  12. Dai, D., Gao, J.*, Steen-Larsen, H. C., Yao, T., Ma, Y., Zhu, M., & Li, S. (2021). Continuous monitoring of the isotopic composition of surface water vapor at Lhasa, southern Tibetan Plateau. Atmospheric Research, 264, 105827. https://doi.org/10.1016/j.atmosres.2021.105827
  13. Islam, M. R., Gao, J.*, Ahmed, N., Karim, M. M., Bhuiyan, A. Q., Ahsan, A., & Ahmed, S. (2020). Controls on spatiotemporal variations of stable isotopes in precipitation across Bangladesh. Atmospheric Research, 247, 105224. https://doi.org/10.1016/j.atmosres.2020.105224
  14. Adhikari, N., Gao, J.*, Yao, T., Yang, Y., & Dai, D. (2020). The main controls of the precipitation stable isotopes at Kathmandu, Nepal. Tellus B: Chemical and Physical Meteorology, 72(1), 1–17. https://doi.org/10.1080/16000889.2020.1721967
  15. Gao, J.*, He, Y., Masson-Delmotte, V., & Yao, T. (2018). ENSO Effects on Annual Variations of Summer Precipitation Stable Isotopes in Lhasa, Southern Tibetan Plateau. Journal of Climate, 31, 1173–1182. https://doi.org/10.1175/JCLI-D-16-0868.1
  16. Gao, J.*, Risi, C., Masson-Delmotte, V., He, Y., & Xu, B. (2016). Southern Tibetan Plateau ice core δ18O reflects abrupt shifts in atmospheric circulation in the late 1970s. Climate Dynamics, 46, 2963–2974. https://doi.org/10.1007/s00382-015-2584-3
  17. Gao, J.*, Shen, S. S. P., Yao, T., Tafolla, N., Risi, C., & He, Y. (2015). Reconstruction of precipitation δ18O over the Tibetan Plateau since 1910. Journal of Geophysical Research: Atmospheres, 120. https://doi.org/10.1002/2015JD023233
  18. He, Y., Risi, C., Gao, J.*, et al. (2015). Impact of atmospheric convection on south Tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data, and atmospheric general circulation modeling. Journal of Geophysical Research: Atmospheres, 120. https://doi.org/10.1002/2014JD022180
  19. Gao, J.*, Yao, T., & Joswiak, D. (2014). Variations of water stable isotopes (δ18O) in two lake basins, southern Tibetan Plateau. Annals of Glaciology, 55(66). https://doi.org/10.3189/2014AoG66A109
  20. Yao, T.*, Masson-Delmotte, V., Gao, J.*, Yu, W., Yang, X., Risi, C., Sturm, C., Werner, M., Zhao, H., He, Y., Ren, W., Tian, L., Shi, C., & Hou, S. (2013). A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations. Reviews of Geophysics, 51. https://doi.org/10.1002/rog.20023
  21. Gao, J.*, Masson-Delmotte, V., Risi, C., He, Y., & Yao, T. (2013). What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam. Tellus B: Chemical and Physical Meteorology, 65(1), 21043. https://doi.org/10.3402/tellusb.v65i0.21043
  22. Gao, J.*, Masson-Delmotte, V., Yao, T., Tian, L., Risi, C., & Hoffmann, G. (2011). Precipitation water stable isotopes in the south Tibetan Plateau: observations and modeling. Journal of Climate, 24(13), 3161–3178. https://doi.org/10.1175/2010JCLI3736.1
  23. Gao, J.*, Tian, L., Liu, Y., & Gong, T. (2009). Oxygen isotope variation in the water cycle of the Yamzho Lake Basin in southern Tibetan Plateau. Chinese Science Bulletin, 54(16), 2758–2765. https://doi.org/10.1007/s11434-009-0487-6
  24. Axelsson, J.*, Gao, J., Eckhardt, S., Cassiani, M., Chen, D., & Zhang, Q. (2023). A precipitation isotopic response in 2014–2015 to moisture transport changes in the central Himalayas. Journal of Geophysical Research: Atmospheres, 128, e2023JD038568. https://doi.org/10.1029/2023JD038568
  25. Yao, T.*, Bolch, T., Chen, D., Gao, J., Immerzeel, W., Piao, S., Su, F., Thompson, L., Wada, Y., Wang, L., Wang, T., Wu, G., Xu, B., Yang, W., Zhang, G.*, & Zhao, P. (2022). The imbalance of the Asian water tower. Nature Reviews Earth & Environment, 3, 618–632. https://doi.org/10.1038/s43017-022-00299-4
  26. Yu, W.*, Yao, T., Thompson, L. G., Jouzel, J., Zhao, H., Xu, B., Jing, Z., Wang, N., Wu, G., Ma, Y., Gao, J., Yang, X., Zhang, J., & Qu, D. (2021). Temperature signals of ice core and speleothem isotopic records from Asian monsoon region as indicated by precipitation δ18O. Earth and Planetary Science Letters, 554, 116665. https://doi.org/10.1016/j.epsl.2020.116665
  27. Ahmed, N.*, Kurita, N., Chowdhury, A., Gao, J., Hassan, S. M. Q., Mannan, A., Mallik, A., Choudhury, S., Bhuiyan, A., & Karim, M. (2020). Atmospheric factors controlling stable isotope variations in modern precipitation of the tropical region of Bangladesh. Isotopes in Environmental and Health Studies, 56(3), 220–237. https://doi.org/10.1080/10256016.2020.1770245
  28. Munksgaard, N. C.*, Kurita, N., Sánchez-Murillo, R., Ahmed, N., Araguas, L., Balachew, D. L., Bird, M. I., Chakraborty, S., Chinh, N. K., Cobb, K. M., Ellis, S. A., Esquivel-Hernández, G., Ganyaglo, S. Y., Gao, J., Gastmans, D., Kaseke, K. F., Kebede, S., Morales, M. R., Mueller, M., … Zwart, C. (2019). Data Descriptor: Daily observations of stable isotope ratios of rainfall in the tropics. Scientific Reports, 9, 14419. https://doi.org/10.1038/s41598-019-50973-9
  29. Liu, Y. Q., Yao, T. D., Jiao, N. Z., Zhu, L. P., Hu, A. Y., Liu, X. B., Gao, J., & Chen, Z. Q.* (2013). Salinity Impact on Bacterial Community Composition in Five High-Altitude Lakes from the Tibetan Plateau, Western China. Geomicrobiology Journal, 30(5), 462–469. https://doi.org/10.1080/01490451.2012.710709
  30. Shi, C., Masson-Delmotte, V., Risi, C., Eglin, T., Stievenard, M., Pierre, M., Wang, X., Gao, J., Bréon, F., Zhang, Q., & Daux, V.* (2011). Sampling Strategy and Climatic Implications of Tree-Ring Stable isotopes in Southeast Tibetan Plateau. Earth and Planetary Science Letters, 301(1–2), 307–316. https://doi.org/10.1016/j.epsl.2010.11.014
  31. Zhao, H.*, Xu, B., Yao, T., Wu, G., Lin, S., Gao, J., & Wang, M. (2011). Deuterium excess record in a southern Tibetan ice core and its potential climatic implications. Climate Dynamics, 38, 1791–1803. https://doi.org/10.1007/s00382-011-1161-7
  32. 高晶*, 姚檀栋, 蔡榕, 张泰华, 何泽青, 牛晓伟, 徐柏青, 邬光剑. (2019). 青藏高原大气水汽稳定同位素三维观测体系. 科学通报, 64(27), 2822–2829.https://doi.org/10.1360/TB-2019-0125
  33. 王逸凡*, 高晶, 胡迈, 姚檀栋, 牛晓伟, 赵爱斌, 申子恒. (2023). 青藏高原大气CH4源汇及其浓度时空变化特征研究进展. 冰川冻土, 45(1), 1–17.https://doi.org/10.7522/j.issn.1000-0240.2023.0001
  34. 高晶, 姚檀栋*, 田立德, 刘勇勤. (2008). 羊卓雍错流域湖水氧稳定同位素空间分布特征. 冰川冻土, 30(2), 932–943.https://doi.org/10.3724/SP.J.1226.2008.00932
  35. 席文涛*, 高晶. (2021). 基于地理探测器分析青藏高原降水δ18O空间分异特征. 干旱区研究, 38(5), 1199–1206. https://doi.org/10.13866/j.azr.2021.05.01
  36. 任行阔*, 高晶, 杨育龙, 陈曼丽, 牛晓伟, 赵爱斌. (2021). 慕士塔格地区大气水汽氢氧稳定同位素季节内变化特征及影响因素分析. 冰川冻土, 43(2), 331–341.https://doi.org/10.7522/j.issn.1000-0240.2021.0010
  37. 袁峰, 高晶, 姚路, 陈兵, 何亚柏, 胡迈, 许振宇, 阚瑞峰*. (2020). 球载CRDS高灵敏度甲烷测量系统的研制. 光学精密工程, 28(9), 1881–1892. https://doi.org/10.37188/OPE.20202809.1881
  38. 周天军*, 高晶, 赵寅, 张丽霞, 张文霞. (2019). 影响“亚洲水塔”的水汽输送过程. 中国科学院院刊, 34(11), 1210–1219.https://doi.org/10.16418/j.issn.1000-3045.2019.11.004
  39. 姚檀栋*, 邬光剑, 徐柏青, 王伟财, 高晶, 安宝晟. (2019). “亚洲水塔”变化与影响. 中国科学院院刊, 34(11), 1203–1209. https://doi.org/10.16418/j.issn.1000-3045.2019.11.003
  40. 王茉, 徐柏青*, 杨松, 高晶, 张泰华, 何泽青, Matjaž Kobal, Hansen, A. D. A. (2019). 基于系留气球的藏东南大气黑碳垂直分布. 科学通报, 64(27), 2949–2958.https://doi.org/10.1360/TB-2019-0101
  41. 姚檀栋*, 朴世龙, 沈妙根, 高晶, 杨威, 张国庆, 类延斌, 高杨, 朱立平, 徐柏青, 余武生, 李生海. (2017). 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应. 中国科学院院刊, 32(9), 976–984. https://doi.org/10.16418/j.issn.1000-3045.2017.09.007
  42. 何由, 高晶, 姚檀栋*, 丁永建, 辛儒. (2015). 利用不同插值方法对青藏高原降水稳定同位素空间分布分析. 冰川冻土, 37(2), 351–359.  https://doi.org/10.7522/j.issn.1000-0240.2015.0038