人才详细信息

姓名:陈莹莹
性别:
学历:博士
专家类别:研究员
电话:010-84097055
传真:010-8409 7079
电子邮箱:chenyy@itpcas.ac.cn
职称:研究员
通讯地址:北京市朝阳区林萃路16号院3号楼

简介

个人简介:

陈莹莹,1981年生,中国科学院青藏高原研究所研究员,博士生导师。开展匹配模型和遥感空间尺度的水文气象要素观测与分析研究。建立了青藏高原土壤水分、土壤温度和降水的加密观测网络,支撑模型和遥感的发展,在模型和遥感验证、模型改进方面发表SCI论文60余篇,总被引4600多次(谷歌学术),其中一作和通讯15篇(含2ESI高引论文)。

教育背景:

2005.092008.06 中科院遥感所,博士

2006.102007.07 美国加州大学圣巴巴拉分校,访问学者

2002.092005.06 兰州大学,资源环境学院,硕士

1998.092002.07 兰州大学,资源环境学院,本科

工作经历:

2023.01-现在 中科院青藏高原所,研究员

2012.072022.12 中科院青藏高原所,副研究员

2011.112012.05 中科院青藏高原所,创新助研

2011.102011.12 德国拜罗伊特大学,访问学者

2008.072011.05 中科院青藏高原所,博士后

研究方向

寒区旱区水热循环过程观测与模拟

职务

社会任职

承担项目

1.二次科考任务二专题六子专题,纳木错流域多尺度降水观测研究(20192024),主持

2. 国家自然科学基金面上项目,羌塘高原卫星降水产品校正与降水量估算(20192022),主持

3. 国家自然科学基金面上项目,同化卫星信号估算青藏高原土壤水热参数(20152018),主持

4. 中国科学院青年创新促进会项目(20162019),主持

5. 科技部973计划专题,青藏高原高分辨率能量水分循环过程及其与强对流过程关系的模拟研究(20152019),主持

6. 科技部973计划专题,考虑有机碳影响的冻土水热传输参数化方案的发展与集成(20132017),主持

7. 气象行业专项子课题,陆面过程参数化方案研究及Noah模型改进(20132015),主持

8. 国家自然科学基金青年基金,青藏高原高寒草地土壤水热性质参数化研究(20122014),主持

获奖及荣誉

2017IUGG-IACSInternational Symposium on the Cryosphere and Sustainable DevelopmentBest Oral Presentation by an Early Career Scientist

2016:中科院青促会会员

2016:中科院青促会2016年学术年会“科学交叉与创新奖”

2014SCIENCE CHINA Earth Sciences 2014年热点论文奖

代表论著

1.      Yang, K.*, Chen, Y.Y.*, Lazhu, Zhan, C.H., Ling, X.Y., Zhou, X., Jiang, Y.Z., Yao, X.N., Lu, H., Ma, X.G., Ouyang L., Pan, W.H., Ren, Y.H., Shao, C.K., Tian, J.X., Wang, Y., Yang, H., Yue, S.Y., Zhang, K., Zhao, D.C., Zhao, L., Zhou, J.H., Zou, B.J., 2023. Cross-sectional Rainfall Observation on the central-western Tibetan Plateau in the warm season: System design and preliminary results. Science China Earth Sciences, DOI: 10.1360/SSTe-2022-0210

2.    Zhan, C., Chen, Y.*, Yang, K., Lazhu, Zhou, X., Jiang, Y., Ling, X., Tian, J., Wang, Y., Li, X., Yang, H., 2023. First evaluation of GPM-Era satellite precipitation products with new observations on the western Tibetan Plateau. Atmospheric Research, 283, 106559, https://doi.org/10.1016/j.atmosres.2022.106559

3.    Jiang, Y., Yang, K., Qi, Y., Zhou, X., He, J., Lu, H., Li, Xin, Chen, Y., Li, Xiaodong, Zhou, B., Mamtimin, A., Shao, C., Ma, X., Tian, J., Zhou, J., 2023. TPHiPr: a long-term (19792020) high-accuracy precipitation dataset (1/30, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations. Earth Syst. Sci. Data 15, 621638. https://doi.org/10.5194/essd-15-621-2023.

4.    Sun, J,, Yang, K., Lu, H., Zhou, X., Li, X., Chen, Y., Guo, W., Wright, J., 2023. Land-Atmosphere Feedbacks Weaken the Cooling Effect of Soil Organic Matter Property toward Deep Soil on the Eastern Tibetan Plateau, Journal of Hydrometeorology, 24(1), 105-117.

5.    Chen, Y., Zhang, M.*, Li, X., Che, T., Jin, R., Guo, J., Yang, W., An, B., Nie, X., 2022. Satellite-Enabled Internet of Remote Things Network Transmits Field Data from the Most Remote Areas of the Tibetan Plateau. Sensors, 22, 3713. https://doi.org/10.3390/s22103713

6.    Rizwan, M., Li, X., Chen, Y. *, Anjum, L., Hamid, S., Yamin, M., Chauhdary, J., Adnan, M., Mehmood, Q., 2022. Simulating future flood risks under climate change in the source region of the Indus River. Journal of Flood Risk Management, e12857, https://doi.org/10.1111/jfr3.12857

7.    Jiang, YZ, Yang, K, Li, XD, Zhang, WJ, Shen, Y, Chen, YY, Li, X, 2022. Atmospheric simulation-based precipitation datasets outperform satellite-based products in closing basin-wide water budget in the eastern Tibetan PlateauINTERNATIONAL JOURNAL OF CLIMATOLOGY, 42, 14, 7252-7268.

8.    Zhou, X., Yang, K., Jiang, Y., Sun,J., Chen, Y., Li, X., Li, J., Shi, J., 2022. Theinfluence of bare ground thermalroughness length parameterization on thesimulation of near-surface air and skintemperatures over the Tibetan Plateau. Journal of Geophysical Research:Atmospheres, 127, e2022JD037245.

9.     Jiang, YZ, Yang, K, Yang, H, Lu, H, Chen, YY, Zhou, X, Sun, J, Yang, Y, Wang, Y, 2022. Characterizing basin-scale precipitation gradients in the Third Pole region using a high-resolution atmospheric simulation-based dataset, HYDROLOGY AND EARTH SYSTEM SCIENCES, 26, 4587-4601.

10.    La, Z., Yang, K., Qin, J., Hou, J., Lei, Y., Wang, J., Huang, A., Chen, Y., Ding, B., Li, X., 2022. A Strict Validation of MODIS Lake Surface Water Temperature on the Tibetan Plateau, Remote Sensing, 14(21): 5454.

11.    Tian, J., Qin, J., Yang, K., Zhao, L., Chen, Y., Lu, H., Li, X., Shi, J., 2022. Improving surface soil moisture retrievals through a novel assimilation algorithm to estimate both model and observation errors, Remote Sensing of Environment, 269(1): 112802.

12.    Pei, LL, Feng, JL, Zhang, W, Lin, YC, Hu, HP, Wang, KY, Chen, YY, Zhang, Q, 2022. Anomalous water retention capacity of alpine meadow soil with eolian dust accretion on the Tibetan Plateau, CATENA, 213, DOI:10.1016/j.catena.2022.106159.

13.    Wang, J, Jiang, LM, Wu, SL, Zhang, C, Chen, YY, Li, H, Yang, JW, Pan, FB, Cui, HZ, 2022. Land Surface Freeze/Thaw Detection Over the Qinghai-Tibet Plateau Using FY-3/MWRI Data, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, DOI:10.1109/TGRS.2022.3182359.

14.    Chen, Y.*, Sharma, S., Zhou, X., Yang, K., Li, X., Niu, X., Hu, X., Khadka, N., 2021. Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya. Atmospheric Research, DOI: 10.1016/j.atmosres.2020.105365.

15.    Sun, J., Chen, Y.*, Yang, K.*, Lu, H., Zhao, L., and Zheng, D., 2021. Influence of organic matter on soil hydrothermal processes in the Tibetan Plateau: Observation and parameterization. Journal of Hydrometeorology, 22, doi: 10.1175/JHM-D-21-0059.1.

16.    La, Z., Yang, K., Hou, J., Wang, J., Lei, Y., Zhu, L., Chen, Y., Wang, M., He, X., 2021. A new finding on the prevalence of rapid water warming during lake ice melting on the Tibetan Plateau, Science Bulletin, 66(23): 2358–2361.

17.    An, B., Wang, W.,…, Chen, Y., et al. 2021. Process, mechanisms, and early warning of glacier collapse-induced river blocking disasters in the Yarlung Tsangpo Grand Canyon, southeastern Tibetan Plateau, Science of The Total Environment, 816(3): 151652.

18.    Jiang, Y.,Yang, K., Shao, C.,Zhou, X., Zhao, L.,Chen, Y., Wu, H., 2021. A downscaling approach for constructing high-resolution precipitation dataset over the Tibetan Plateau from ERA5 reanalysis, Atmospheric Research, 256, DOI 10.1016/j.atmosres.2021.105574

19.    Ren, Y., Yang, K., Wang, H., Zhao, L., Chen, Y., Zhou, X., 2021. The South Asia Monsoon Break Promotes Grass Growth on the Tibetan Plateau, Journal of Geophysical Research: Biogeosciences, 126(3), DOI: 10.1029/2020JG005951.

20.    Kang, C.,Zhao, T., Shi, J.,Cosh, M.,Chen, Y.,Starks, P.,Collins, C.,Wu, S.,Sun, R.,Zheng, J.,2021. Global Soil Moisture Retrievals from the Chinese FY-3D Microwave Radiation Imager. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 59(5), 4018-4032.

21.    Yao, X., Yang, K., Zhou, X., Wang, Y., Chen, Y., Lu, H., 2021, Surface friction contrast between water body and land enhances precipitation downwind of a large lake in Tibet. Climate Dynamics, 56:2113–2126.

22.    Sharma, S., Chen, Y.*, Zhou, X., Yang, K., Li, X., Niu, X., Hu, X., Khadka, N., 2020. Evaluation of GPM-Era satellite precipitation products on the southern slopes of the central Himalayas against rain gauge data. Remote Sensing, 12 (11), DOI: 10.3390/rs12111836.

23.    Nawaz, Z., Li, X., Chen, Y.*, Nawaz, N., Gull, R., Elnashar, A., 2020. Spatio-temporal assessment of global precipitation products over the largest agriculture region in Pakistan. Remote Sensing, 12 (21), 1-24. DOI: 10.3390/rs12213650.

24.    Nawaz, Z., Li, X., Chen, Y.*, Wang, X., Zhang, K., Nawaz, N., Guo, Y., Meerzhan, A., 2020. Spatiotemporal Assessment of Temperature Data Products for the Detection of Warming Trends and Abrupt Transitions over the Largest Irrigated Area of Pakistan. Advances in Meteorology, DOI: 10.1155/2020/3584030.

25.    Sharma, S., Khadka, N., Hamal, K., Shrestha, D., Talchabhadel, R., Chen, Y., 2020. How Accurately Can Satellite Products (TMPA and IMERG) Detect Precipitation Patterns, Extremities, and Drought Across the Nepalese Himalaya? Earth and Space Science, 7 (8), DOI: 10.1029/2020EA001315.

26.    Yang, K., Chen, Y., He, J., Zhao, L., Lu, H., Qin, J., Zheng, D., Li, X., 2020. Development of a daily soil moisture product for the period of 2002–2011 in Chinese mainland. Science China Earth Sciences, 63 (8),1113-1125. DOI: 10.1007/s11430-019-9588-5.

27.    He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., Li, X., 2020, The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data, 7 (1),DOI: 10.1038/s41597-020-0369-y.

28.    Yue, S., Yang, K., Lu, H., Chen, Y., Sharma, S., Yang, X., Shrestha, M.L., 2020. Distinct temperature changes between north and south sides of central–eastern Himalayas since 1970s. International Journal of Climatology, 40 (9), 4300-4308. DOI: 10.1002/joc.6439.

29.    Luo, Q., Yang, K., Chen, Y., Zhou, X., 2020. Method development for estimating soil organic carbon content in an alpine region using soil moisture data. Science China Earth Sciences, 63 (4), 591-601. DOI: 10.1007/s11430-019-9554-8.

30.    Ouyang, L., Yang, K., Lu, H., Chen, Y., Lazhu, Zhou, X., Wang, Y., 2020. Ground-Based Observations Reveal Unique Valley Precipitation Patterns in the Central Himalaya. Journal of Geophysical Research: Atmospheres, 125 (5), DOI: 10.1029/2019JD031502.

31.    Wang, Y., Yang, K., Zhou, X., Chen, D., Lu, H., Ouyang, L., Chen, Y., Lazhu, Wang, B., 2020. Synergy of orographic drag parameterization and high resolution greatly reduces biases of WRF-simulated precipitation in central Himalaya. Climate Dynamics, 54 (3-4), 1729-1740. DOI: 10.1007/s00382-019-05080-w.

32.    Nawaz, Z., Li, X., Chen, Y.*, Guo, Y., Wang, X., Nawaz, N., 2019. Temporal and spatial characteristics of precipitation and temperature in Punjab, Pakistan. Water, 11 (9), DOI: 10.3390/w11091916.

33.    Rizwan, M., Li, X., Jamal, K., Chen, Y.*, Chauhdary, J.N., Zheng, D., Anjum, L., Ran, Y., Pan, X., 2019. Precipitation variations under a changing climate from 1961-2015 in the source region of the Indus River. Water, 11 (7), DOI: 10.3390/w11071366.

34.    Li, C., Lu, H., Leung, L.R., Yang, K., Li, H., Wang, W., Han, M., Chen, Y., 2019. Improving Land Surface Temperature Simulation in CoLM Over the Tibetan Plateau Through Fractional Vegetation Cover Derived From a Remotely Sensed Clumping Index and Model-Simulated Leaf Area Index. Journal of Geophysical Research: Atmospheres, 124 (5), 2620-2642. DOI: 10.1029/2018JD028640.

35.    Li, C., Lu, H., Yang, K., Han, M., Wright, J.S., Chen, Y., Yu, L., Xu, S., Huang, X., Gong, W., 2018. The evaluation of SMAP enhanced soil moisture products using high-resolution model simulations and in-situ observations on the Tibetan Plateau. Remote Sensing, 10 (4), DOI: 10.3390/rs10040535.

36.    Chen, Y.*, Yang, K., Qin, J., Cui, Q., Lu, H., La, Z., Han, M., Tang, W., 2017. Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau. Journal of Geophysical Research, 122 (11), 5780-5792. DOI: 10.1002/2016JD026388.

37.    Han, M., Lu, H., Yang, K., Qin, J., Chen, Y., Zhao, L., Lazhu, 2017. A surface soil temperature retrieval algorithm based on amsr-e multi-frequency brightness temperatures. International Journal of Remote Sensing, 38 (23), 6735-6754. DOI: 10.1080/01431161.2017.1363438.

38.    Zhou, X., Beljaars, A., Wang, Y., Huang, B., Lin, C., Chen, Y., Wu, H., 2017. Evaluation of WRF Simulations With Different Selections of Subgrid Orographic Drag Over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 122 (18), 9759-9772. DOI: 10.1002/2017JD027212.

39.    Wang, Y., Yang, K., Pan, Z., Qin, J., Chen, D., Lin, C., Chen, Y., Lazhu, Tang, W., Han, M., Lu, N., Wu, H., 2017. valuation of precipitable water vapor from four satellite products and four reanalysis datasets against GPS measurements on the Southern Tibetan Plateau. Journal of Climate, 30 (15), 5699-5713. DOI: 10.1175/JCLI-D-16-0630.1.

40.    Li, C., Lu, H., Yang, K., Wright, J.S., Yu, L., Chen, Y., Huang, X., Xu, S., 2017. Evaluation of the Common Land Model (CoLM) from the perspective of water and energy budget simulation: Towards inclusion in CMIP6. Atmosphere, 8 (8), DOI: 10.3390/atmos8080141.

41.    Wang, L., Zhou, J., Qi, J., Sun, L., Yang, K., Tian, L., Lin, Y., Liu, W., Shrestha, M., Xue, Y., Koike, T., Ma, Y., Li, X., Chen, Y., Chen, D., Piao, S., Lu, H., 2017. Development of a land surface model with coupled snow and frozen soil physics. Water Resources Research, 53 (6), 5085-5103. DOI: 10.1002/2017WR020451.

42.    Ding, B., Yang, K., Yang, W., He, X., Chen, Y., Lazhu, Guo, X., Wang, L., Wu, H., Yao, T., 2017. Development of a Water and Enthalpy Budget-based Glacier mass balance Model (WEB-GM) and its preliminary validation. Water Resources Research, 53 (4), 3146-3178. DOI: 10.1002/2016WR018865.

43.    Yang, K., Qin, J., Chen, Y., Han, M., Zhao, L., 2016. Soil moisture and temperature measuring networks in the Tibetan Plateau and their applications in validation of microwave products. International Geoscience and Remote Sensing Symposium, 2016-November, DOI: 10.1109/IGARSS.2016.7729896.

44.    Wang, L., Li, X., Chen, Y., Yang, K., Chen, D., Zhou, J., Liu, W., Qi, J., Huang, J., 2016. Validation of the global land data assimilation system based on measurements of soil temperature profiles. Agricultural and Forest Meteorology, 218-219, 288-297. DOI: 10.1016/j.agrformet.2016.01.003.

45.    Yang, K., Zhu, L., Chen, Y., Zhao, L., Qin, J., Lu, H., Tang, W., Han, M., Ding, B., Fang, N., 2016. Land surface model calibration through microwave data assimilation for improving soil moisture simulations. Journal of Hydrology, 533, 266-276. DOI: 10.1016/j.jhydrol.2015.12.018.

46.    La Z., Yang, K., Wang, J., Lei, Y., Chen, Y., Zhu, L., Ding, B., Qin, J., 2016. Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau. Journal of Geophysical Research, 121 (13), 7578-7591. DOI: 10.1002/2015JD024523.

47.    Lin, C., Yang, K., Huang, J., Tang, W., Qin, J., Niu, X., Chen, Y., Chen, D., Lu, N., Fu, R., 2015. Impacts of wind stilling on solar radiation variability in China. Scientific Reports, 5, DOI: 10.1038/srep15135.

48.    Han, M., Yang, K., Qin, J., Jin, R., Ma, Y., Wen, J., Chen, Y., Zhao, L., Lazhu, Tang, W., 2015. An algorithm based on the standard deviation of passive microwave brightness temperatures for monitoring soil surface freeze/thaw state on the Tibetan plateau. IEEE Transactions on Geoscience and Remote Sensing, 53 (5), DOI: 10.1109/TGRS.2014.2364823.

49.    Qin, J., Zhao, L., Chen, Y., Yang, K., Yang, Y., Chen, Z., Lu, H., 2015. Inter-comparison of spatial upscaling methods for evaluation of satellite-based soil moisture. Journal of Hydrology, 523, 170-178. DOI: 10.1016/j.jhydrol.2015.01.061.

50.    Wu, H., Yang, K., Niu, X.L., Chen, Y.Y., 2015. The role of cloud height and warming in the decadal weakening of atmospheric heat source over the Tibetan Plateau. Science China Earth Sciences, 58 (3), 395-403. DOI: 10.1007/s11430-014-4973-6.

51.    Zheng, D., van der Velde, R., Su, Z., Wang, X., Wen, J., Booij, M.J., Hoekstra, A.Y., Chen, Y., 2015. Augmentations to the Noah model physics for application to the Yellow River source area. Part I: Soil water flow. Journal of Hydrometeorology, 16 (6), 2659-2676. DOI: 10.1175/JHM-D-14-0198.1.

52.    Zheng, D., van der Velde, R., Su, Z., Wang, X., Wen, J., Booij, M.J., Hoekstra, A.Y., Chen, Y., 2015. Augmentations to the Noah model physics for application to the Yellow River source area. Part II: Turbulent heat fluxes and soil heat transport. Journal of Hydrometeorology, 16 (6), 2677-2694. DOI: 10.1175/JHM-D-14-0199.1.

53.    Ding, B., Yang, K., Qin, J., Wang, L., Chen, Y., He, X., 2014. The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. Journal of Hydrology, 513, 154-163. DOI: 10.1016/j.jhydrol.2014.03.038.

54.    Yang, K., Wu, H., Chen, Y., Qin, J., Wang, L., 2014. Toward a satellite-based observation of atmospheric heat source over land. Journal of Geophysical Research, 119 (6), 3124-3133. DOI: 10.1002/2013JD021091.

55.    Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., Chen, Y., 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global and Planetary Change, 112, 79-91. DOI: 10.1016/j.gloplacha.2013.12.001.

56.    Zhao, L., Yang, K., Qin, J., Chen, Y., Tang, W., Lu, H., Yang, Z.-L., 2014. The scale-dependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central Tibetan Plateau. Remote Sensing of Environment, 152, 345-355. DOI: 10.1016/j.rse.2014.07.005.

57.    Chen, Y.*, Yang, K., Qin, J., Zhao, L., Tang, W., Han, M., 2013. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. Journal of Geophysical Research Atmospheres, 118 (10), 4466-4475.

58.    Yang, K., Qin, J., Zhao, L., Chen, Y., Tang, W., Han, M., Zhu, L., Chen, Z., Lv, N., Ding, B., Wu, H., Lin, C., 2013. A multiscale soil moisture and freeze-thaw monitoring network on the third pole. Bulletin of the American Meteorological Society, 94 (12), 1907-1916. DOI: 10.1175/BAMs-d-12-00203.1.

59.    Qin, J., Yang, K., Lu, N., Chen, Y., Zhao, L., Han, M., 2013. Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia. Remote Sensing of Environment, 138, 1-9. DOI: 10.1016/j.rse.2013.07.003.

60.    Xue, B.-L., Wang, L., Yang, K., Tian, L., Qin, J., Chen, Y., Zhao, L., Ma, Y., Koike, T., Hu, Z., Li, X., 2013. Modeling the land surface water and energy cycles of a mesoscale watershed in the central Tibetan Plateau during summer with a distributed hydrological model. Journal of Geophysical Research Atmospheres, 118 (16), 8857-8868. DOI: 10.1002/jgrd.50696.

61.    Zhao, L., Yang, K., Qin, J., Chen, Y., Tang, W., Montzka, C., Wu, H., Lin, C., Han, M., Vereecken, H., 2013. Spatiotemporal analysis of soil moisture observations within a Tibetan mesoscale area and its implication to regional soil moisture measurements. Journal of Hydrology, 482, 92-104. DOI: 10.1016/j.jhydrol.2012.12.033.

62.    Zeng, C., Zhang, F., Wang, Q., Chen, Y., Joswiak, D.R., 2013. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau. Journal of Hydrology, 478, 148-156. DOI: 10.1016/j.jhydrol.2012.11.058.

63.    Zhao, L., Yang, K., Qin, J., Chen, Y., 2013. Optimal exploitation of AMSR-E signals for improving soil moisture estimation through land data assimilation. IEEE Transactions on Geoscience and Remote Sensing, 51 (1), 399-410. DOI: 10.1109/TGRS.2012.2198483.

64.    Chen, Y.*, Yang, K., Tang, W., Qin, J., Zhao, L., 2012. Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands. Science China Earth Sciences, 55 (6), 1001-1011. DOI: 10.1007/s11430-012-4433-0.

65.    Chen, Y.*, Yang, K., He, J., Qin, J., Shi, J., Du, J., He, Q., 2011. Improving land surface temperature modeling for dry land of China. Journal of Geophysical Research Atmospheres, 116 (20). DOI: 10.1029/2011JD015921.

66.    Chen Y. Y., K. Yang, 2011.Parameterizing thermal roughness length is crucial for dryland energy budget modeling, GEWEX News, 21(1), 5-6.

67.    Guo X. F., K. Yang, Y. Y. Chen, 2011, Weakening sensible heat source over the Tibetan Plateau revisited: effects of the land–atmosphere thermal coupling. Theor. Appl. Climatol., DOI 10.1007/s00704-010-0328-1.

68.    Guo X. F., K. Yang, L. Zhao, W. Yang, S. H. Li, M. L. Zhu, T. D. Yao, Y. Y. Chen, 2011. Critical Evaluations of Scalar Roughness Length Parameterizations over a Melting Valley Glacier. Boundary-Layer Meteorol., 5, 307-332.

69.    Chen, Y.*, Yang, K., Zhou, D., Qin, J., Guo, X., 2010. Improving the noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. Journal of Hydrometeorology, 11 (4), 995-1006. DOI: 10.1175/2010JHM1185.1.

70.    Yang K., Y. Y. Chen, and J. Qin, 2009, Some practical notes on the land surface modeling in the Tibetan Plateau, Hydrol. Earth Syst. Sc., 13, 687-701.

71.    阳坤*, 陈莹莹*, 拉珠, 詹昌辉, 令小艳, 周旭, 姜尧志, 姚向楠, 卢麾, 马小刚, 欧阳琳, 潘伟豪, 任扬航, 邵长坤, 田佳鑫, 王岩, 杨桦, 岳思妤, 张可, 赵定池, 赵龙, 周建宏, 邹宓君, 2023. 青藏高原暖季中西部的断面降雨观测: 系统设计与初步结果. 中国科学: 地球科学, DOI: 10.1360/SSTe-2022-0210

72.    骆琪,阳坤,陈莹莹,周旭,2020. 利用土壤水分数据估计高寒区土壤有机碳含量的方法研究, 中国科学:地球科学,DOI: 10.1360/SSTe-2019-0019.

73.    李新, 勾晓华, 王宁练, 盛煜, 金会军, 祁元, 宋晓谕, 侯扶江, 李育, 赵长明, 邹松兵, 王宏伟, 郑东海, 陈莹莹, 牛晓蕾, 2019. 祁连山绿色发展: 从生态治理到生态恢复. 科学通报, 64: 2928-2937.

74.    方楠,阳坤,拉珠,陈莹莹,王君波,朱立平,WRF湖泊模型对纳木错湖的适用性研究,高原气象,DOI: 10.7522/j.issn.1000-0534.

专著章节:

1. 陈莹莹,阳坤,陆面过程的分析与模拟,丁永健等《陆地表层过程研究现状综合分析与评估》,科学出版社,2013.

2. 陈莹莹,阳坤,干旱区和高海拔地区陆面模拟研究,梁顺林等《陆面过程观测、模拟和数据同化》,科学出版社,2013.

3. Chen Y.-Y.K. YangLand Surface Process Study and Modeling in Dryland and High-Elevation Regions,in: Liang S. et al., eds. Land Surface Observation, Modeling and Data Assimilation, Taylor & Francis Group, 2013.

4. 陈莹莹,肖遥,气候模式中的冻土参数化,林岩銮等《全球气候系统中冰冻圈的模拟研究》,科学出版社,2019.

5. 陈莹莹,周旭,区域应用:青藏高原陆气耦合模拟研究,施建成等《陆地能量与水循环的遥感观测与模拟》,科学出版社,2023.

更多信息见以下网页:

https://www.researchgate.net/profile/Yingying_Chen7