人才详细信息

姓名:白 艳
性别:
学历:博士
专家类别:研究员
电话:010-84097054
传真:010-8409 7079
电子邮箱:Baiyan06@itpcas.ac.cn
职称:研究员
通讯地址:北京市朝阳区林萃路16号院3号楼

简介

1984年9月-1988年6月:兰州大学化学系分析专业取得学士学位; 

1988年7月-1993年12月:甘肃省化工研究院任助理工程师; 

1994年1月-2001年12月:甘肃省化工研究院任工程师; 

2001年12月-2003年8月:甘肃省化工研究院任高级工程师; 

2003年9月-2006年6月:兰州大学资源环境学院第四纪地质专业, 取得博士学位; 

2006年9月-2009年6月:中科院青藏高原研究所博士后; 

2008年6月-2008年9月:德国马普生物地球化学研究所访问学者; 

2009年7月-今,中科院青藏高原所副研究员 

研究方向

生物地球化学以及高原隆升和环境变化 

职务

社会任职

 

承担项目

1. 2021.1-2024.12: NSFC面上项目"新生代以来青藏高原东北部生物标志物古高度重建:古温度、古水文和古生态证据"(56万元,42071012);
2. 2020.1-2023.12: NSFC面上项目"西宁盆地早始新世气候最适宜期古气候环境变化" (68万元,41972195; 参加);
3. 2019.1-2022.12: NSFC面上项目"叶蜡正构烷烃氢同位素和甘油四醚脂揭示的晚中新世以来喜马拉雅山隆升历史"(63万元,41871023);
4. 2013-2017: 973项目“中国西部大陆剥蚀风化与青藏高原隆升和全球变化的关系”子课题,100万;
5. 2013-2017:中国科学院战略性先导科技专项(B类), 子课题“稳定同位素高度计重建与古高度估算”175万元;
6. 2011-2014: 创新群体基金“青藏高原北部气候与构造相互作用”(41021001),子课题” 青藏高原北部叶蜡正构烷烃氢同位素值高度计建立”,40万;
7. 2011-2013:NSFC面上项目"伦坡拉盆地新生代地层叶蜡正构烷烃氢同位素值揭示的青藏高原南部隆升历史” (45万元, 41071003);
8. 2007-2009:  NSFC面上项目"青藏高原典型西风和季风区表土类脂物及其正构烷烃碳、氢同位素与海拔高度的关系研究” (35万元, 40671024);
9. 2014.1-2017.12: NSFC面上项目"青藏高原印度季风传输途径中表土叶蜡氢同位素的高度效应:古高度重建意义”(95万元,41371022) ;
10. 2016.1-2019.12: NSFC面上项目"青藏高原不同气候区表土甘油双烷基甘油四醚GDGTs高度效应” (90万元,41571014) 

获奖及荣誉

2006年第40批中国博士后基金 

代表论著

1. Chen, C., Bai, Y*., Fang, X., Zhuang, G., Khodzhiev, A., Azamdzhon, M., 2021. Evaluation of bacterial tetraether lipids proxies in soils from the westerlies (west Pamirs, Tajikistan): Potential for paleoenvironment reconstruction. Chemical geology. 559, 119908.

2. Bai, Y.*, Chen, Q., Zhou, Y.*, Fang, X., Liu, X., 2020b. Terpenoids in the Surface Soils from Different Ecosystems on the Tibetan Plateau. Organic Geochemistry. 150, 104125.    

3. Chen, C., Bai, Y.*, Fang, X., Xu, Q., Zhang, T., Deng, T., He, J., Chen, Q., 2020. Lower-altitude of the Himalayas before the Mid-Pliocene as constrained by hydrological and thermal conditions. Earth and Planetary Science Letters. 545, 116422.

4. Bai, Y.*, Tian, Q., Fang, X., Chen, C., Liu, X., 2020a. Responses of sedimentary δ2Halk values to environmental changes as revealed by different plant responses to altitude and altituderelated temperatures. Science of the Total Environment. 733, 138087.

5.  Kang, J., Zan, J.*, Bai, Y.*, Fang, X., Chen, C., Guan, C., & Khodzhiev, A. (2020). Critical altitudinal shift from detrital to pedogenic origin of the magnetic properties of surface soils in the western Pamir Plateau, Tajikistan. Geochemistry, Geophysics, Geosystems. 21, e2019GC008752.

6. Bai, Y*., Chen, Q., Zhou, Y.*, Fang, X., Liu, X., 2020. Terpenoids in the Surface Soils from Different Ecosystems on the Tibetan Plateau. Organic Geochemistry. 150, 104125. 

7.Chen, C., Bai, Y*., Fang, X., Zhuang, G., Khodzhiev, A., Azamdzhon, M., 2021. Evaluation of bacterial tetraether lipids proxies in soils from the westerlies (west Pamirs, Tajikistan): Potential for paleoenvironment reconstruction. Chemical geology. 559, 119908. 

8.Chen, C., Bai, Y.*, Fang, X., Xu, Q., Zhang, T., Deng, T., He, J., Chen, Q., 2020. Lower-altitude of the Himalayas before the Mid-Pliocene as constrained by hydrological and thermal conditions. Earth and Planetary Science Letters. 545, 116422. 

9.Bai, Y.*, Tian, Q., Fang, X., Chen, C., Liu, X., 2020a. Responses of sedimentary δ2Halk values to environmental changes as revealed by different plant responses to altitude and altituderelated temperatures. Science of the Total Environment. 733, 138087. 

10.Kang, J., Zan, J.*, Bai, Y.*, Fang, X., Chen, C., Guan, C., & Khodzhiev, A. (2020). Critical altitudinal shift from detrital to pedogenic origin of the magnetic properties of surface soils in the western Pamir Plateau, Tajikistan. Geochemistry, Geophysics, Geosystems. 21, e2019GC008752. 

11.Chen, C., Bai, Y.*, Fang, X., Guo, H., Meng, Q., Zhang, W., Zhou, P., Azamdzhon, M., 2019. A Late Miocene terrestrial temperature history for the northeastern Tibetan Plateau's period of tectonic expansion. Geophysical Research Letters. 46, 8375–8386. 

12.Bai, Y.*, Azamdzhon, M., Wang, S., Fang, X., Guo, H., Zhou, P., Chen, C., Liu, X., Jia, S., Wang, Q., 2019. An evaluation of biological and climatic effects on plant n-alkane distributions and δ2Halk in a field experiment conducted in central Tibet. Organic Geochemistry. 135, 53–63. 

13.Bai, Y.*, Chen, C., Xu, Q., Fang, X., 2018. Paleoaltimetry potentiality of branched GDGTs from southern Tibet, Geochemistry, Geophysics, Geosystems. 19, 551–564. 

14.Bai, Y.*, Chen, C., Fang, X., Liu, X., Guo, H., 2017. Altitudinal effect of soil n-alkane δD values on the eastern Tibetan Plateau and their increasing isotopic fractionation with altitude. Science China Earth Sciences. 60(9), 1664–1673. 

15.Bai, Y.*, Fang, X., Jia, G., Sun, J., Wen, R., Ye, Y., 2015. Different altitude effect of leaf wax n-alkane δD in surface soils along two vapor transport pathways from Southeast Tibetan Plateau. Geochimica et Cosmochimica Acta. 170, 94–107. 

16.Bai, Y., Tian, Q., Fang, X.*, Wu, F., 2014. The “Inverse Altitude Effect” of Leaf Wax-derived n-alkane δD on the Northeastern Tibetan Plateau. Organic Geochemistry. 73, 90–100. 

17.Bai, Y., Fang, X.*, Tian, Q., 2012. Spatial patterns of soil n-alkane δD values on the Tibetan Plateau –Implications for monsoon boundaries and paleoelevation reconstructions. Journal of Geophysical Research. (117) D20113. 

18.Bai, Y., Fang, X.*, Gleixner, G., Mügler, I., 2011. Effects of precipitation regimes on D values of soil n-alkanes from altitude gradients –implications for palaeoatimetry. Organic Geochemistry. 42, 838–845. 

19.Long, L.Q., Fang, X.*, Miao, Y.F., Bai, Y, Wang, Y., 2011. Northern Tibetan Plateau cooling and aridification linked to Cenozoic global cooling: Evidence from n-alkane distributions of Paleogene sedimentary sequences in the Xining Basin. Chinese Science Bulletin.56, 1569–1578. 

20.Bai, Y., Fang, X.*, Nie, J., Meng, Q., Chi, Y., 2010. Methoxy n-fatty acids in surface soils from the Gongga and Kunlun Mountain regions: Ecological implications. Chinese Science Bulletin. 51 (1), 1–12. 

21.Bai, Y., Fang, X.*., Ni, J., Wang, Y., Wu, F., 2009. Paleoecological and paleoclimatic history on the Chinese Loess Plateau recorded by biomarkers: implication for the last 8 Ma Asian drying evolution. Palaeogeography, Palaeoclimatology, Palaeoecology. 271, 161–169. 

22.Guo H, Chen C, Bai Y, Fang X, Zhang W, 2018. Paleoenvironmental evolution of the Xining Basin, NE Tibetan Plateau during mid-Miocene: Revealed by GDGTs. Quaternary Sciences, 38(1): 97–106 (in Chinese with English abstract). 

23.Bai, Y.*, Chen, C., Fang, X., Liu, X., Guo, H., 2017. Altitudinal effect of soil n-alkane δD values on the eastern Tibetan Plateau and their increasing isotopic fractionation with altitude. Science China Earth Sciences, (47): 1233–1242 (in Chinese). 

24.Long, L.Q., Fang, X.*, Miao, Y.F., Bai, Y, Wang, Y., 2011. Northern Tibetan Plateau cooling and aridification linked to Cenozoic global cooling: Evidence from n-alkane distributions of Paleogene sedimentary sequences in the Xining Basin, 56(15): 1221–1231 (in Chinese). 

25.Bai, Y., Fang, X.*., Wang Y., Kenig, F., Chen X., Wang, Y., 2006. Distribution of aliphatic ketones in Chinese soils: Potential environmental implications. Organic Geochemistry. 37, 640–646. 

26.Bai, Y., Fang, X.*., Wang Y., Kenig, F., Miao, Y, Wang, Y., 2006. Branched alkanes with quaternary carbon atoms in Chinese soils: Potential environmental implications. Chinese Science Bulletin. 51 (1), 1–8. 

27.Wang Y., Fang, X., Bai, Y., Xi, X., Zhang, X., Wang, Y., 2007. Distribution of lipids in modern soils from various regions with continuous climate (moisture-heat) change in China and their climate significance. Science in China Series D: Earth Sciences. 50(4), 600–612. 

28.Chen, X.L., Fang, X.M.*, An, Z.S., Han, W.X., Wang, X., Bai, Y., 2007. An 8.1Ma calcite record of Asian summer monsoon evolution on the Chinese central Loess Plateau. Science in China Series D: Earth Sciences, 50(3), 321–330. 

29.Wang Y., Fang, X., Bai, Y., Xi, X., Yang, S., Wang, Y., 2006. Macrocyclic alkanes in modern soils of China. Organic Geochemistry. 37: 146–151.