人才详细信息

姓名:刘永稳
性别:
学历:博士
专家类别:研究员/优青
电话:
传真:010-8409 7079
电子邮箱:liuyongwen@itpcas.ac.cn
职称:研究员
通讯地址:北京市朝阳区林萃路16号院3号楼

简介

2022年1月至今:中国科学院青藏高原研究所,研究员

2018年4月~2021年12月:中国科学院青藏高原研究所,副研究员

2014年7月~2018年3月:北京大学,生态学专业,博士后

2008年9月~2014年6月:中国科学院青藏高原研究所,自然地理学专业,博士

2004年9月~2008年6月:河南理工大学,地理信息系统专业,学士

主要研究成果:

围绕全球变化背景下陆地生态系统碳汇变化机制,聚焦大气CO2浓度升高和植物可利用氮变化对陆地生态系统碳汇功能的影响,开展了如下研究:(1)构建植被-土壤碳库周转理论模型,以此为纽带,结合控制实验观测和过程模型模拟,定量揭示了1960年代以来大气CO2浓度升高,通过光合作用底物增加效应,对北温带和全球陆地碳汇增加的贡献,指出考虑了氮过程的模型平均高估了氮对植物生长的限制作用(发表于Nature Geoscience)。(2)大气CO2浓度升高不仅增加植物光合作用底物,还与其他温室气体共同导致气候变暖,继而影响植物生长。基于遥感观测、大气反演、模型模拟数据解析了陆地植被固碳对气候变暖响应的季节分异及其空间格局。观测和模型结果均表明,在热带地区,气候变暖降低各季节植被固碳速率;然而,在高纬度生态系统,升温促进春季植被固碳,却降低夏季植被固碳速率,存在季节补偿效应。(发表于Journal of ClimateJournal of Geophysical Research-Biogeosciences等)。(3)针对模型模拟不确定性较大的高寒地区,基于观测揭示青藏高原无机氮湿沉降量、空间格局和传输路径,并发现氮沉降增加非线性地促进高寒植物群落水平碳吸收,但植物生长氮限制特征存在种间差异,且高寒植物生长氮限制还受水分条件和草原管理共同调节(发表于Atmospheric Chemistry and PhysicsPlant and SoilScience of the Total EnvironmentCatena等)。 

招生方向:
采用模型、控制实验、地面调查、遥感等手段研究高寒生态系统碳循环对全球变化的响应及其机制。欢迎生态学、地理信息系统、地理学、遥感等相关专业背景的同学报考。

研究方向

高寒生态系统碳循环与全球变化

职务

社会任职

承担项目

1. 国家自然科学基金委员会,优秀青年科学基金项目,42122005,高寒生态系统碳循环与全球变化,2022-01至2024-12,主持
2. 国家自然科学基金委员会,青年科学基金项目,41701089,基于陆面过程模型量化研究活性氮沉降增加对青藏高原高寒草地碳汇功能的影响,2018-01至2020-12,主持
3. 国家自然科学基金委员会,国际(地区)合作与交流项目,41861134036,极地与青藏高原白化植被对全球变化的响应及反馈,2019-01至2021-12,参加
4. 国家自然科学基金委员会,重点项目,41230750,高寒草地生态系统生产力维持和提高的关键过程及其机理研究,2013-01至2017-12,参加
5. 国家自然科学基金委员会,面上项目,31272488,高寒草甸主要植物和植物群落对适度放牧和增温的响应与适应机理研究,2013-01至2016-12,参加
6. 国家自然科学基金委员会,面上项目,41175128,观测与模式研究青藏高原高寒生态系统对大气氮沉降增加的响应,2012-01至2015-12,参加
7. 国家自然科学基金委员会,面上项目,40975096,结合机理模式与冰芯记录分析气候变化对大气N2O浓度增长的贡献,2010-01至2012-12,参加 

获奖及荣誉

2019年,入选中国科学院青年创新促进会会员

2013年,国家奖学金 

代表论著

第一/通讯作者论文

1.He Y, Liu YW*, Lei LJ, Terrer C, Huntingford C, Penuelas J, Xu H, Piao SL*. 2023. CO2 fertilization contributed more than half of the observed forest biomass increase in northern extra-tropical land. Global Change Biology, doi: https://doi.org/10.1111/gcb.16806

    

2.Liu YW, Ding JZ*, Li PL, Zhang RR, Zhao JX, Dorji T. 2023. Decreasing elevational gradient in peak photosynthesis timing on the Tibetan Plateau. Agricultural and Forest Meteorology, 339:109558.

3.Liu YW, Piao SL*, Makowski D, Ciais P, Gasser T, Song J, Wan SQ, Penuelas J, Janssens IA. 2022. Data-driven quantification of nitrogen enrichment impact on Northern Hemisphere plant biomass. Environmental Research Letters, 17:074032.

4.Liu YW*, Wei D, Tenzintarchen, Zhao JX, Geng XD, Dai DX, Xu-Ri*. 2021. Nitrogen addition alters C-N cycling in alpine rangelands: Evidence from a 4-year in situ field experiment. Catena, 203:105366. 

5.Liu YW*, Geng XD, Tenzintarchen, Wei D, Dai DX, Xu-Ri*. 2020. Divergence in ecosystem carbon fluxes and soil nitrogen characteristics across alpine steppe, alpine meadow and alpine swamp ecosystems in a biome transition zone. Science of the Total Environment, 748:142453. 

6.Liu YW*. 2020. Optimum temperature for photosynthesis: from leaf- to ecosystem-scale. Science Bulletin, 65:601-604. 

7.Liu YW*, Tenzintarchen, Geng XD, Wei D, Dai DX Xu-Ri*. 2020. Grazing exclusion enhanced net ecosystem carbon uptake but decreased plant nutrient content in an alpine steppe. Catena, 195: 104799. 

8.Liu YW, Piao SL*, Gasser T, Ciais P, Yang H, Wang H, Keenan TF, Huang MT, Wan SQ, Song J, Wang K, Janssens IA, Penuelas J, Huntingford C, Wang XH, Arain MA, Fang YY, Fisher JB, Huang MY, Huntzinger DN, Ito A, Jain AK, Mao JF, Michalak AM, Peng CH, Poulter B, Schwalm C, Shi XY, Tian HQ, Wei YX, Zeng N, Zhu QA, Wang T. 2019. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nature Geoscience, 12:809-814. 

9.Liu YW, Piao SL*, Lian X, Ciais P, Smith WK. 2017. Seasonal responses of terrestrial carbon cycle to climate variations in CMIP5 models: Evaluation and projection. Journal of Climate, 30:6481-6503. 

10.Liu YW, Wang T, Huang MT, Yao YT, Ciais P, Piao SL*. 2016. Changes in interannual climate sensitivities of terrestrial carbon fluxes during the 21st century predicted by CMIP5 Earth System Models. Journal of Geophysical Research-Biogeosciences, 121:903-918. 

11.Liu YW, Xu-Ri*, Wang YS, Pan YP, Piao SL. 2015. Wet deposition of atmospheric inorganic nitrogen at five remote sites in the Tibetan Plateau. Atmospheric Chemistry and Physics, 15:11683-11700. 

12.Liu YW, Xu-Ri*, Xu XL, Wei D, Wang YH, Wang YS. 2013. Plant and soil responses of an alpine steppe on the Tibetan Plateau to multi-level nitrogen addition. Plant and Soil, 373:515-529. 

合著论文:

13.Wang K, Piao SL*, He Y, Liu YW, He HL. 2023. Spatial variations and mechanisms for the stability of terrestrial carbon sink in China. Science China-Earth Sciences, 66:227-236.

14.Zhao HF, Fu YH, Wang XH, Zhang Y, Liu YW, Janssens IA. 2021. Diverging models introduce large uncertainty in future climate warming impact on spring phenology of temperate deciduous trees.Science of the Total Environment, 757:143903. 

15.Li PL, Hu ZM, Liu YW. 2020. Shift in the trend of browning in Southwestern Tibetan Plateau in the past two decades. Agricultural and Forest Meteorology 287:107950. 

16.He Y, Peng SS, Liu YW, Li XY, Wang K, Ciais P, Arain MA, Fang YY, Fisher JB, Goll D, Hayes D, Huntzinger DN, Ito A, Jain AK, Janssens IA, Mao JF, Matteo C, Michalak AM, Peng CH, Penuelas J, Poulter B, Qin DH, Ricciuto DM, Schaefer K, Schwalm CR, Shi XY, Tian HQ, Vicca S, Wei YX, Zeng N, Zhu QA. 2020. Global vegetation biomass production efficiency constrained by models and observations. Global Change Biology, 26:1474-1484. 

17.Zhang WX, Chen YQ, Shi LL, Wang XL, Liu YW, Mao R, Rao XQ, Lin YB, Shao YH, Li XB, Zhao CC, Liu SJ, Piao SL, Zhu WX, Zou XM, Fu SL. 2019. An alternative approach to reduce algorithm-derived biases in monitoring soil organic carbon changes. Ecology and Evolution, 9:7586-7596. 

18.Xu-Ri, Wang YS, Wang YH, Niu HS, Liu YW, Zhuang QL. 2019. Estimating N2O emissions from soils under natural vegetation in China. Plant and Soil, 434:271-287. 

19.Song J, Wan SQ, Piao SL, Hui DF, Hovenden MJ, Ciais P, Liu YW, Liu YZ, Zhong MX, Zheng MM, Ma GG, Zhou ZX, Ru JY. 2019. Elevated CO2 does not stimulate carbon sink in a semi-arid grassland. Ecology Letters, 20:458-468. 

18.Liu D, Wang T, Yang T, Yan ZJ, Liu YW, Zhao YT, Piao SL. 2019. Deciphering impacts of climate extremes on Tibetan grasslands in the last fifteen years. Science Bulletin, 64:446-454. 

21.Huang MT, Piao SL, Ciais P, Penuelas J, Wang XH, Keenan TF, Peng SS, Berry JA, Wang K, Mao JF, Alkama R, Cescatti A, Cuntz M, De Deurwaerder H, Gao MD, He Y, Liu YW, Luo YQ, Myneni RB, Niu SL, Shi XY, Yuan WP, Verbeeck H, Wang T, Wu J, Janssens IA. 2019. Air temperature optima of vegetation productivity across global biomes. Nature Ecology & Evolution, 3:772-779. 

22.Ding JZ, Wang T, Piao SL, Smith P, Zhang GL, Yan ZJ, Ren S, Liu D, Wang SP, Chen SY, Dai FQ, He JS, Li YN, Liu YW, Mao JF, Arain A, Tian HQ, Shi XY, Yang YH, Zeng N, Zhao L. 2019. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 10:4195. 

23.Wu DH, Piao SL, Liu YW, Ciais P, Yao YT. 2018. Evaluation of CMIP5 Earth System Models for the spatial patterns of biomass and soil carbon turnover times and their linkage with climate. Journal of Climate, 31:5947-5960. 

24.Wu DH, Ciais P, Viovy N, Knapp AK, Wilcox K, Bahn M, Smith MD, Vicca S, Fatichi S, Zscheischler J, He Y, Li XY, Ito A, Arneth A, Harper A, Ukkola A, Paschalis A, Poulter B, Peng CH, Ricciuto D, Reinthaler D, Chen GS, Tian HQ, Genet H, Mao JF, Ingrisch J, Nabel JESM, Pongratz J, Boysen LR, Kautz M, Schmitt M, Meir P, Zhu QA, Hasibeder R, Sippel S, Dangal SRS, Sitch S, Shi XY, Wang YP, Luo YQ,Liu YW, Piao SL. 2018. Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences, 15:3421-3437. 

25.Wang T, Liu D, Piao SL, Wang YL, Wang XY, Guo H, Lian X, Burkhart JF, Ciais P, Huang MT, Janssens I, Li Y, Liu YW, Penuelas J, Peng SS, Yang H, Yao YT, Yin Y, Zhao YT. 2018. Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nature Communications, 9:5391. 

26.Piao S, Huang M, Liu Z, Wang XH, Ciais P, Canadell JG, Wang K, Bastos A, Friedlingstein P, Houghton RA, Le Quere C, Liu YW, Myneni RB, Peng SS, Pongratz J, Sitch S, Yan T, Wang YL, Zhu ZC, Wu DH, Wang T. 2018. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nature Geoscience, 11:739-743. 

27.Liu Q, Fu YSH, Liu YW, Janssens IA, Piao SL. 2018. Simulating the onset of spring vegetation growth across the Northern Hemisphere. Global Change Biology, 24:1342-1356. 

28.Hong SB, Piao SL, Chen AP, Liu YW, Liu LL, Peng SS, Sardans J, Sun Y, Penuelas J, Zeng H. 2018. Afforestation neutralizes soil pH.Nature Communications, 9:520. 

29.朱再春, 刘永稳, 刘祯, 朴世龙. 2018. CMIP5模式对未来升温情景下全球陆地生态系统净初级生产力变化的预估. 气候变化研究进展, 14:31-39. 

30.彭书时, 朴世龙, 于家烁, 刘永稳, 汪涛, 朱高峰, 董金玮, 缪驰远. 2018. 地理系统模型研究进展. 地理科学进展, 37:109-120. 

31.耿晓东, 旭日, 刘永稳. 2018. 青藏高原纳木错高寒草甸生态系统碳交换对多梯度增水的响应. 植物生态学报, 42:397-405. 

31.Zhao C, Piao SL, Wang XH, Huang Y, Ciais P, Elliott J, Huang MT, Janssens IA, Li T, Lian X, Liu YW, Muller C, Peng SS, Wang T, Zeng ZZ, Penuelas J. 2017. Plausible rice yield losses under future climate warming. Nature Plants, 3:16202. 

32.Zhang Y, Yao YT, Wang XH, Liu YW, Piao SL. 2017. Mapping spatial distribution of forest age in China. Earth and Space Science, 4:108-116. 

33.Pan YP, Liu YW, Wentworth GR, Zhang L, Zhao YH, Li Y, Liu XJ, Du EZ, Fang YT, Xiao HW, Ma HY, Wang YS. 2017. Letter to the editor: Critical assessments of the current state of scientific knowledge, terminology, and research needs concerning the ecological effects of elevated atmospheric nitrogen deposition in China. Atmospheric Environment, 153:109-116. 

34.Zhu ZC, Piao SL, Myneni RB, Huang MT, Zeng ZZ, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao CX, Cheng L, Kato E, Koven C, Li Y, Lian X, Liu YW, Liu RG, Mao JF, Pan YZ, Peng SS, Penuelas J, Poulter B, Pugh TAM, Stocker BD, Viovy N, Wang XH, Wang YP, Xiao ZQ, Yang H, Zaehle S, Zeng N. 2016. Greening of the Earth and its drivers. Nature Climate Change, 6:791-795. 

35.Zhang Y, Zhu ZC, Liu Z, Zeng ZZ, Ciais P, Huang MT, Liu YW, Piao SL. 2016. Seasonal and interannual changes in vegetation activity of tropical forests in Southeast Asia. Agricultural and Forest Meteorology, 224:1-10. 

36.Yao YT, Wang XH, Zeng ZZ, Liu YW, Peng SS, Zhu ZC, Piao SL. 2016. The effect of afforestation on soil moisture content in northeastern China. Plos One, 11:e0160776. 

37.Wang T, Lin X, Liu YW, Dantec-Nedelec S, Ottle C. 2016. Causes of uncertainty in China's net primary production over the 21st century projected by the CMIP5 Earth system models. International Journal of Climatology, 36:2323-2334. 

38.Qiao N, Xu XL, Hu YH, Blagodatskaya E, Liu YW, Schaefer D, Kuzyakov Y. 2016. Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum. Scientific Reports, 6:19865. 

39.Liu Q, Fu YSH, Zhu ZC, Liu YW, Liu Z, Huang MT, Janssens IA, Piao SL. 2016. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Global Change Biology, 22:3702-3711. 

40.Peng SS, Ciais P, Chevallier F, Peylin P, Cadule P, Sitch S, Piao SL, Ahlstrom A, Huntingford C, Levy P, Li XR, Liu YW, Lomas M, Poulter B, Viovy N, Wang T, Wang XH, Zaehle S, Zeng N, Zhao F, Zhao HF. 2015. Benchmarking the seasonal cycle of CO2 fluxes simulated by terrestrial ecosystem models. Global Biogeochemical Cycles, 29:46-64. 

41.Wei D, Xu-Ri, Liu YW, Wang YH, Wang YS. 2014. Three-year study of CO2 efflux and CH4/N2O fluxes at an alpine steppe site on the central Tibetan Plateau and their responses to simulated N deposition. Geoderma, 232:88-96. 

42.旦增塔庆, 旭日, 魏学红, 魏达, 刘永稳, 王迎红. 2014. 西藏纳木错高寒草原、高寒草甸和沼泽化草甸主要温室气体通量对比研究. 草地学报, 22:493-501. 

43.Liu B, Kang SC, Sun JM, Zhang YL, Xu R, Wang YJ, Liu YW, Cong ZY. 2013. Wet precipitation chemistry at a high-altitude site (3,326 m a.s.l.) in the southeastern Tibetan Plateau. Environmental Science and Pollution Research, 20:5013-5027. 

44.Wei D, Xu-Ri, Wang YH, Wang YS, Liu YW, Yao TD. 2012. Responses of CO2, CH4 and N2O fluxes to livestock exclosure in an alpine steppe on the Tibetan Plateau, China. Plant and Soil, 359:45-55.