人才详细信息

姓名:陈学龙
性别:
学历:博士
专家类别:研究员
电话:
传真:010-84097079
电子邮箱:x.chen@itpcas.ac.cn
职称:研究员
通讯地址:北京市朝阳区林萃路16号院3号楼

简介

2020年03月-今,中国科学院青藏高原研究所,研究员;
2018年02月-2020年03月,中国科学院青藏高原研究所,项目研究员;
2013年11月-2017年12月,荷兰特文特大学,Researcher;
2009年12月-2013年11月,荷兰特文特大学,博士;
2006年07月-2011年07月,中国科学院青藏高原研究所,博士;
2003年07月-2006年07月,兰州大学,大气科学学院,实验员;
1999年07月-2003年07月,兰州大学,大气科学,学士;

研究方向

山地气象

职务

社会任职

受邀国际杂志Geophysical Research Letters (2),Remote Sensing of Environment (4), Journal of Geophysical Research–Atmospheres (4), Agricultural and Forest Meteorology(2), Journal of Hydrometeorology (2), Hydrology and Earth System Sciences (HESS) (9), Journal of Hydrology (2), Journal of Applied Meteorology and Climatology (4), Earth-Science Review (ESR)(1), Theoretical and Applied Climatology (TAAC) (4), International Journal of Climatology (2)等审稿共计50多篇。担任全球能量水循环国际计划数据分析委员会委员(GEWEX/GDAP),中国遥感应用协会热红外遥感专业委员会委员,英国气象学会《Meteorological Applications》副主编。

承担项目

承担项目:

1.利用改进的能量平衡模型计算青藏高原时空连续的每日蒸发量(2019-2023), 62万,结题;

  1. 雅鲁藏布大峡谷水汽通道科考分队(2018-2023),320万,主持;


指导研究生论文:

a数值模拟方向

  1. 博后 曹殿斌,藏东南极端降水变化及归因,2021级(现为青藏所墨脱中心执行主任);
  2. 博士生 刘亚静,青藏高原对流层大气观测模拟分析,2019级在读;
  3. 博士生 续欣,青藏高原微物理参数化方案对降水模拟的影响,2020级在读;
  4. 博士生 张强,藏东南极端降水的模拟,2023级在读;

b卫星遥感方向

  1. 博士生 Habtamu Tsegaye Workneh,卫星遥感研究非洲高原水资源变化,2019级在读;
  2. 硕士生 吕阳昆,雅鲁藏布大峡谷水汽输送,2023级在读;
  3. 硕士生 张存波,青藏高原裸土蒸发模型改进,2021级在读(客座)

已毕业研究生:

  1. 博士 李璐含,GPM-IMERG卫星降水产品在雅鲁藏布大峡谷山地地区的评估,2023年答辩;
  2. 博士 袁令,近40年来青藏高原地表蒸散发变化及归因,2022年答辩(现中船风电);
  3. 博士 赖悦,喜马拉雅山中段大气边界层结构的日变化和季节变化研究,2021年答辩(现北京市气象局);
  4. 博士 Eyale Bayable, 埃塞俄比亚山地地气相互作用的卫星遥感,2020年答辩(现亚迪斯亚贝巴大学副教授);
  5. 硕士 Anik Dash,热红外遥感估算青藏高原的日蒸散发量,2023年答辩;
  6. 硕士 Yonas Welday Tekle, Scaling up Sardon catchment groundwater recharge into Dehesa (Montado) Hard Rocks of Iberian Peninsula, 2016年答辩;
  7. 硕士 Jing Zhao, Estimate hourly and daily evapotranspiration using remote sensing technology for Haihe River Basin, 2016年答辩;

获奖及荣誉

代表论著

代表论著:

  1. Chen X.*, Xu X., Ma Y.*, Wang G., Chen D., Cao D., Xu X., Zhang Q., Li L., Liu Y., Liu L., Li M., Luo S., Wang X., and Hu X., 2024, Investigation of precipitation process in the water vapor channel of the Yarlung Zsangbo Grand Canyon, Bulletin of the American Meteorological Society, DOI:10.1175/BAMS-D-23-0120.1.
  2. Chen X., Liu Y., Ma Y., Ma W., Xu X., Cheng X., Wang B., 2024, TP-PROFILE monitoring the thermodynamical structure of the troposphere over the Third Pole, Advances in Atmospheric Sciences, doi:10.1007/s00376-023-3199-y
  3. Chen X.*, Liu Y., Ma Y., Xu X., Xu X., Li L., Cao D., Zhang Q., Wang G., Li M., Luo S., Wang X., 2024, Research progress on the water vapor channel within the Yarlung Zsangbo Grand Canyon, China. Atmospheric and Oceanic Science Letters, 100462
  4. Chen X.*, Cao D., Liu Y., Xu Xin, Ma Y., 2023, An observational view of rainfall characteristics and evaluation of ERA5 diurnal cycle in the Yarlung Tsangbo Grand Canyon, China, Quarterly Journal of the Royal Meteorological Society, 2, 1-14.
  5. 陈学龙, 徐详德,2022. 雅鲁藏布大峡谷水汽通道科学考察. 科学出版社
  6. Chen X.*, Su Z., Ma Y., Trigo I. and Gentine P., 2021, Remote Sensing of Global Daily Evapotranspiration based on a Surface Energy Balance Method and Reanalysis Data. Journal of Geophysical Research: Atmospheres, 126(16): e2020JD032873.
  7. Chen X.*, Su Z., Ma Y., Elizabeth M, 2019, Optimization of a remote sensing energy balance method over different canopy applied at global scaleAgricultural and Forest Meteorology, 279: 107633.
  8. Chen X.*, William J., Su Z., 2019, A Column Canopy‐Air Turbulent Diffusion Method for Different Canopy Structures, Journal of Geophysical Research: Atmospheres, 2019.01.15, 124.
  9. Chen X.*, Su Z., Ma Y., Cleverly J., Liddell M., 2017, An accurate estimate of monthly mean land surface temperatures from MODIS clear-sky retrievals, J. Hydrometeor., 18, 2827–2847.
  10. Chen X.*, Bojan S., Rotach M., Anel JA, Su Z., Ma Y., Li M., 2016, Reasons for the Extremely High-Ranging Planetary Boundary Layer over the Western Tibetan Plateau in Winter, Journal of Atmospheric Science, 73, 2021–2038.
  11. Chen X.*, Su Z., Ma Y., Liu S., Yu Q., and Xu Z., 2014, Development of a 10 year (2001–2010) 0.1° dataset of land-surface energy balance for mainland China, Atmos. Chem. Phys., 14, 13097–13117.
  12. Chen X, Anel JA, Su Z, de la Torre L, Kelder H, et al., 2013: The Deep Atmospheric Boundary Layer and Its Significance to the Stratosphere and Troposphere Exchange over the Tibetan Plateau, PLoS ONE 8(2).
  13. Chen X.*, Su Z., Ma Y., Yang K., and Wang, B., 2013, Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau, Hydrology and Earth System Sciences, 17, 1607-1618.
  14. Chen X.*, Su, Z., Ma, Y., et. al., 2012, An Improvement of Roughness Height Parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau, Journal of Applied Meteorology and Climatology,52(3): 623-633.
  15. Chen X.*, Su Z., Ma, Y., Sun F., 2012, Analysis of land-atmosphere interactions over the north region of Mt. Qomolangma (Mt. Everest), Arctic Antarctic and Alpine Research 44(4): 412-422.
  16. Chen X.*, Ma Y., H. Kelder, Su Z., and Yang K., 2011: On the behavior of the tropopause folding events over the Tibetan Plateau, Atmos. Chem. Phys., 11, 5113–5122.

通讯作者:

  1. Yuan L., Chen X.*, Ma Y.* et al., 2024, A monthly 0.01° terrestrial evapotranspiration product (1982-2018) for the Tibetan Plateau. Earth Syst. Sci. Data., 16(2): 775-801.
  2. Workneh H.T., Chen X.*, Ma Y.*, Bayable E. and Dash A., 2024. Comparison of IDW, Kriging and orographic based linear interpolations of rainfall in six rainfall regimes of Ethiopia. Journal of Hydrology: Regional Studies, 52: 101696.
  3. Cao D., Chen X.*, Lin Y., Zhang Q., Ma Y., 2024, Causes of an extremely low visibility event in Northeast China, Meteorological Applications, (in publication)
  4. Wang Y., Xiao J., Ma Y.*, Ding J., Chen X.*, Ding Z., Luo Y., 2023, Persistent and enhanced carbon sequestration capacity of alpine grasslands on the Earth’s Third Pole, Science Advances, 9(20): eade6875 (2023).
  5. Xu X., Chen X*, Zhao X., Cao D., Liu Y., Li L., and Ma Y., 2023, Microphysical Characteristics of Snowfall on the Southeastern Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 128(20): e2023JD038760.
  6. Xu X., Chen X.*, Cao D., Liu Y., Li L., and Ma Y., 2023, Comparisons of Rainfall Microphysical Characteristics Between the southeastern Tibetan Plateau and Low-altitude Areas. Journal of Applied Meteorology and Climatology. 62: 1591–1609.
  7. Lai Y., Chen X.*, Ma Y.*, Sun F., Zhou D., and Xie Z., 2023, Variation of atmospheric boundary layer height over the northern, central, and southern parts of the Tibetan Plateau during three monsoon seasons. Journal of Geophysical Research: Atmospheres,128, e2022JD038000.
  8. Li L., Chen X.*, Ma Y., H. Zuo, Zhao W., Liu Y., Cao D., Xu X.,2023, Implications for validation of IMERG satellite precipitation in a complex mountainous region, Remote Sensing, 15(18): 4380.
  9. Lai Y., Chen X.*, Ma Y.*, Chen D. and Zhaxi S., 2021: Impacts of the westerlies on planetary boundary layer growth over a valley on the north side of the central Himalayas. Journal of Geophysical Research: Atmospheres, 126, e2020JD033928.
  10. Yuan L., Ma Y.*, Chen X.*, Wang Y. and Li Z. 2021: An enhanced MOD16 evapotranspiration model for the Tibetan Plateau during the unfrozen season. Journal of Geophysical Research: Atmospheres, 126(7), e2020JD032787.
  11. Tegegne E., Ma Y.*, Chen X.*, Ma W., Wang B., Ding Z. and Zhu Z., 2021: Estimation of the distribution of the total net radiative flux from satellite and automatic weather station data in the Upper Blue Nile basin, Ethiopia. Theoretical and Applied Climatology 143, 587–602.
  12. Xu M., Kang S.*, Chen X.*, Wu H., Wang X, Su Z., 2018: Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source Region of the Tibetan Plateau, Science of The Total Environment, 639: 1220-1232.

其他合作文章:

  1. Ma Y., Yao T., Zhong L., Wang B., Xu X., Hu Z., Ma W., Sun F., Han C., Li M., Chen X., Wang J., Li Y., Gu L., Xie Z., Liu L., Sun G., Wang S., Zhou D., Zuo H., Xu C., Liu X., Wang, Y., & Wang Z. (2023). Comprehensive study of energy and water exchange over the Tibetan Plateau: A review and perspective: From GAME/Tibet and CAMP/Tibet to TORP, TPEORP, and TPEITORP. Earth-Science Reviews, 237, 104312
  2. Ma Y., Wang B., Chen X., Zhong L., Hu Z., Ma W., Han C., Li M. 2022, Strengthening the three-dimensional comprehensive observation system of multi-layer interaction on the Tibetan Plateau to cope with the warming and wetting trend. Atmospheric and Oceanic Science Letters, 15, 100224
  3. Guo X., Meng D., Chen X., Li X.2022. Validation and Comparison of Seven Land Surface Evapotranspiration Products in the Haihe River Basin, China. Remote Sensing, 14, 4308
  4. 袁令, 马耀明, 陈学龙, 王玉阳, 2023. 青藏高原六套陆面蒸散发产品的评估. 大气科学, 47(3): 893−906.
  5. Slättberg N., Lai H., Chen X., Ma Y., Chen D., 2022, Spatial and temporal patterns of planetary boundary layer height during 1979–2018 over the Tibetan Plateau using ERA5. International Journal of Climatology, 42(6): 3360–3377.
  6. 马耀明, 胡泽勇, 王宾宾, 马伟强, 陈学龙, 韩存博, 李茂善, 仲雷, 谷良雷, 孙方林, 赖悦, 刘莲, 谢志鹏, 韩熠哲, 袁令, 姚楠, 石兴东,2021. 青藏高原多圈层地气相互作用过程研究进展和回顾.高原气象, 40, 1241
  7. Yu X., Hu X., Wang G., Wang K., Chen, X. 2022. Machine-Learning Estimation of Snow Depth in 2021 Texas Statewide Winter Storm Using SAR Imagery. Geophysical Research Letters, 49, e2022GL099119
  8. Su Z., Ma Y.*, Chen X., et al., 2021, Monitoring water and energy cycles at climate scale in the Third Pole Environment (CLIMATE-TPE), Remote Sensing, 13(18), 3661, doi:10.3390/rs13183661.
  9. Han C., Ma Y., Wang B., Zhong L., Ma W., Chen X., and Su Z., 2021, Long term variations of actual evapotranspiration over the Tibetan Plateau. Earth Syst. Sci. Data, 2021, 1-32.
  10. González-Dugo M., Chen X., Andreu A., Carpintero E., Gómez-Giraldez P., Carrara A. and Su Z., 2021: Long-term water stress and drought monitoring of Mediterranean oak savanna vegetation using thermal remote sensing. Hydrology and Earth System Sciences, 25, 755–768.
  11. Ma Y., Hu Z., Xie Z., Ma W., Wang B., Chen X., Li M., Zhong L., Sun F., Gu L., Han C., Zhang L., Liu X., Ding Z., Sun G., Wang S., Wang Y. and Wang Z., 2020: A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau. Earth Syst. Sci. Data, 12(4), 2937-2957.
  12. Yin Z., Wang X., Ottlé C., Zhou F., Guimberteau M., Polcher J., Peng S., Piao S., Li L., Bo Y., Chen X., Zhou X., Kim H. and Ciais P., 2020: Improvement of the Irrigation Scheme in the ORCHIDEE Land Surface Model and Impacts of Irrigation on Regional Water Budgets Over China. Journal of Advances in Modeling Earth Systems, 12(4), e2019MS001770.
  13. Huang Y., Guo H., Chen X., Chen Z., van der Tol C., Zhou Y., Tang J.,2019: Meteorological controls on evapotranspiration over a coastal salt marsh ecosystem under tidal influence, Agricultural and Forest Meteorology, 279, 107755.
  14. Ge J., W. Guo, A. J. Pitman, M. G. D. Kauwe, Chen X., and Fu C., 2019: The non-radiative effect dominates local surface temperature change caused by afforestation in China, J. Climate, 32, 4445–4471.
  15. Wang Q., Veldea R., Ferrazzolib P, Chen X., Bai X., Su Z., 2019, Mapping soil moisture across the Tibetan Plateau plains using Aquarius active and passive L-band microwave observations. International Journal of Applied Earth Observation and Geoinformation, 77: 108-118.
  16. Han, C., Ma, Y., Chen, X. and Su, Z., 2017, Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012, Int. J. Climatol, 37: 4757-476.
  17. González M. P., Chen X., et al., 2017: Evolution of evapotranspiration and water stress of oak savanna vegetation in the Iberian Peninsula (2001-2015), Spanish Journal of Remote Sensing, 2017(50): 10.
  18. Li M, Su Z., Ma Y.; Chen X.; Zhang L.; Hu Z., 2016: Characteristics of land-atmosphere energy and turbulent fluxes over the plateau steppe in central Tibetan Plateau, Sciences in Cold and Arid Regions, 02: 103~115.
  19. Peng J., A. Loew, Chen X., Ma Y., and Z. Su, 2016: Comparison of satellite based evapotranspiration estimates over the Tibetan Plateau, Hydrology and Earth System Sciences, 20, 3167-3182.
  20. Wang B., Ma Y., Chen X., et al., 2015: Observation and simulation of lake‐air heat and water transfer processes in a high‐altitude shallow lake on the Tibetan Plateau, J. Geophys. Res. Atmos., 120, 12327–12344.
  21. Han C., Ma Y., Chen X, Su Z., 2015: Estimates of land surface heat fluxes of the Mt. Everest region over the Tibetan Plateau utilizing ASTER data, Atmospheric Research,168,180-190.
  22. Tian X., van der Tol, C., Su Z., Li Z., Chen E., Li X., Yan M., Chen X., et al., 2015: Simulation of forest evapotranspiration using time - series parameterization of the surface energy balance system (SEBS) over the Qilian Mountains, Remote Sensing, 7 (2015)12. 15822-15843.                                     
  23. Han C., Ma Y., Su Z., Chen X., et. al., 2014: Estimates of effective aerodynamic roughness length over mountainous areas of the Tibetan Plateau, Quarterly Journal of the Royal Meteorological Society, 141, 689,1457-1465.                     
  24. Li M., Babel W., Chen X., Zhang L., Sun F., et al., 2014: A 3-yr data set of sensible and latent heat fluxes on the Tibetan Plateau derived by eddy-covariance measurements, Theoretical and Applied Climatology, 1-13.                           
  25. Su Z., Fernández, D., Timmermans J., Chen, X., et.al., 2014: First results of the earth observation Water Cycle Multi-mission Observation Strategy (WACMOS), International Journal of Applied Earth Observation and Geoinformation,26:270-285.    
  26. Timmermans W., Christiaan V. der T., Timmermans, J., Ucer M., Chen X. et al., 2014: An overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) Campaign, Acta Geophysica, DOI: 10.2478/s11600-014-0254-1
  27. Biermann T, Babel, W, Ma, W, Chen, X, et al., 2013: Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau, Theoretical and Applied Climatology, 1-16.
  28. Ma Y., Zhong L., Wang B., W. Ma, Chen X., and M. Li, 2011: Determination of land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau by using the MODIS and in-situ data, Atmos. Chem. Phys., 11, 10461–10469.
  29. Ma Y., Wang Y., Wu R., Hu Z., Yang K., Li M., W. Ma, L. Zhong, F. Sun, Chen X., Z. Zhu, S. Wang, and H. Ishikawa, 2009: Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau, Hydrology and Earth System Sciences, 13, 1103-1111.