报告题目 : A Bayesian Framework for Environmental Uncertainty Quantification with Application to Soil Carbon Modeling 报 告 人:叶明 博士 主 持 人:张凡 研究员 地 点:青藏高原研究所办公楼 915 会议室 时 间:2014年9月5日(星期五)140:00-15:30 叶明 博士简介: 叶明,1997年南京大学地球科学系本科毕业,2002年美国亚利桑那大学水文及水资源系毕业并获博士学位。2012年当选为美国地质学会会士(Fellow,Geological Society of America),现为《Water Resources Research》和《Journal of Hydrology》杂志副主编,以及美国地球物理学会地下水 技术指导委员会成员(Groundwater Technical Advisory Committee, American Geophysical Union)和不确定性分析技术指导委员会副组长(Hydrologic Uncertainty Advisory Committee, American Geophysical Union),美国土木工程学会地下水管理指导委员会成员(Groundwater Management committee, American Society of Civil Engineering)。发表SCI论文45篇。2012 获得美国能源部 Early Career Award. 摘 要: A Bayesian framework is developed to quantify predictive uncertainty in environmental modeling caused by uncertainty in modeling scenarios, model structures, model parameters, and data. This framework can be used to consider multiple models and to evaluate them for model selection and/or model averaging. Based on the variance decomposition, new Sobol’global sensitivity indices are defined for multiple models and multiple scenarios so that biased identification of important parameters can be avoided, given that parameter importance may vary substantially between alternative model structures and/or alternative modeling scenarios. An example of using the framework to quantify model uncertainty is presented to simulate soil microbial respiration pulses in response to episodic rainfall pulses (the “Birch effect”). The Bayesian framework is mathematically general and can be applied to a wide range of environmental problems. |